General Information of Drug Off-Target (DOT) (ID: OTORBI4I)

DOT Name Transcription initiation factor TFIID subunit 9B (TAF9B)
Synonyms Neuronal cell death-related protein 7; DN-7; Transcription initiation factor TFIID subunit 9-like; Transcription-associated factor TAFII31L
Gene Name TAF9B
UniProt ID
TAF9B_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
7KTR; 7KTS
Pfam ID
PF02291
Sequence
MESGKMAPPKNAPRDALVMAQILKDMGITEYEPRVINQMLEFAFRYVTTILDDAKIYSSH
AKKPNVDADDVRLAIQCRADQSFTSPPPRDFLLDIARQKNQTPLPLIKPYAGPRLPPDRY
CLTAPNYRLKSLIKKGPNQGRLVPRLSVGAVSSKPTTPTIATPQTVSVPNKVATPMSVTS
QRFTVQIPPSQSTPVKPVPATTAVQNVLINPSMIGPKNILITTNMVSSQNTANEANPLKR
KHEDDDDNDIM
Function
Essential for cell viability. TAF9 and TAF9B are involved in transcriptional activation as well as repression of distinct but overlapping sets of genes. May have a role in gene regulation associated with apoptosis. TAFs are components of the transcription factor IID (TFIID) complex, the TBP-free TAFII complex (TFTC), the PCAF histone acetylase complex and the STAGA transcription coactivator-HAT complex. TFIID or TFTC are essential for the regulation of RNA polymerase II-mediated transcription.
KEGG Pathway
Basal transcription factors (hsa03022 )
Reactome Pathway
RNA Polymerase II HIV Promoter Escape (R-HSA-167162 )
Transcription of the HIV genome (R-HSA-167172 )
Ub-specific processing proteases (R-HSA-5689880 )
RNA Polymerase II Pre-transcription Events (R-HSA-674695 )
Regulation of TP53 Activity through Phosphorylation (R-HSA-6804756 )
RNA Polymerase II Promoter Escape (R-HSA-73776 )
RNA Polymerase II Transcription Pre-Initiation And Promoter Opening (R-HSA-73779 )
RNA Polymerase II Transcription Initiation (R-HSA-75953 )
RNA Polymerase II Transcription Initiation And Promoter Clearance (R-HSA-76042 )
HIV Transcription Initiation (R-HSA-167161 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Transcription initiation factor TFIID subunit 9B (TAF9B). [1]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Transcription initiation factor TFIID subunit 9B (TAF9B). [11]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Transcription initiation factor TFIID subunit 9B (TAF9B). [13]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of Transcription initiation factor TFIID subunit 9B (TAF9B). [13]
------------------------------------------------------------------------------------
15 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Transcription initiation factor TFIID subunit 9B (TAF9B). [2]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Transcription initiation factor TFIID subunit 9B (TAF9B). [3]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Transcription initiation factor TFIID subunit 9B (TAF9B). [4]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Transcription initiation factor TFIID subunit 9B (TAF9B). [5]
Vorinostat DMWMPD4 Approved Vorinostat affects the expression of Transcription initiation factor TFIID subunit 9B (TAF9B). [6]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Transcription initiation factor TFIID subunit 9B (TAF9B). [7]
Decitabine DMQL8XJ Approved Decitabine increases the expression of Transcription initiation factor TFIID subunit 9B (TAF9B). [8]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Transcription initiation factor TFIID subunit 9B (TAF9B). [9]
Diclofenac DMPIHLS Approved Diclofenac affects the expression of Transcription initiation factor TFIID subunit 9B (TAF9B). [7]
Tocopherol DMBIJZ6 Phase 2 Tocopherol decreases the expression of Transcription initiation factor TFIID subunit 9B (TAF9B). [10]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Transcription initiation factor TFIID subunit 9B (TAF9B). [12]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Transcription initiation factor TFIID subunit 9B (TAF9B). [14]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Transcription initiation factor TFIID subunit 9B (TAF9B). [15]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Transcription initiation factor TFIID subunit 9B (TAF9B). [16]
OXYBENZONE DMMZYX6 Investigative OXYBENZONE increases the expression of Transcription initiation factor TFIID subunit 9B (TAF9B). [17]
------------------------------------------------------------------------------------
⏷ Show the Full List of 15 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
4 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
5 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
6 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
7 Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNF-mediated hepatotoxicity. Toxicol Sci. 2014 Jul;140(1):144-59. doi: 10.1093/toxsci/kfu072. Epub 2014 Apr 20.
8 The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. Leukemia. 2009 Jun;23(6):1019-28.
9 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
10 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
11 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
12 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
13 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
14 Bisphenol A Exposure Changes the Transcriptomic and Proteomic Dynamics of Human Retinoblastoma Y79 Cells. Genes (Basel). 2021 Feb 11;12(2):264. doi: 10.3390/genes12020264.
15 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
16 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
17 Chromatin modifiers: A new class of pollutants with potential epigenetic effects revealed by in vitro assays and transcriptomic analyses. Toxicology. 2023 Jan 15;484:153413. doi: 10.1016/j.tox.2022.153413. Epub 2022 Dec 26.