General Information of Drug Off-Target (DOT) (ID: OTQ9GCXL)

DOT Name Ribitol-5-phosphate transferase FKTN (FKTN)
Synonyms EC 2.7.8.-; Fukutin; Fukuyama-type congenital muscular dystrophy protein; Ribitol-5-phosphate transferase
Gene Name FKTN
Related Disease
Autosomal recessive limb-girdle muscular dystrophy type 2M ( )
Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 4 ( )
Myopathy caused by variation in FKTN ( )
Advanced cancer ( )
Astrocytoma ( )
Autosomal recessive limb-girdle muscular dystrophy type 2A ( )
Campomelic dysplasia ( )
Cardiac failure ( )
Cardiomyopathy ( )
Central core myopathy ( )
Cobblestone lissencephaly ( )
Congenital fiber-type disproportion myopathy ( )
Congenital muscular dystrophy ( )
Congenital myopathy ( )
Congestive heart failure ( )
Craniometaphyseal dysplasia, autosomal dominant ( )
Dilated cardiomyopathy ( )
Dilated cardiomyopathy 1A ( )
Duchenne muscular dystrophy ( )
Familial dilated cardiomyopathy ( )
Hypertrophic cardiomyopathy ( )
Limb-girdle muscular dystrophy ( )
Limb-girdle muscular dystrophy due to POMK deficiency ( )
Multiminicore myopathy ( )
Muscular dystrophy ( )
Muscular dystrophy-dystroglycanopathy (congenital with intellectual disability), type B2 ( )
Muscular dystrophy-dystroglycanopathy (congenital with intellectual disability), type B3 ( )
Nemaline myopathy ( )
Qualitative or quantitative defects of dysferlin ( )
Rigid spine muscular dystrophy 1 ( )
Gastric cancer ( )
Intellectual disability ( )
Isolated congenital microcephaly ( )
Stomach cancer ( )
Muscle-eye-brain disease ( )
Muscular dystrophy-dystroglycanopathy, type A ( )
Obsolete congenital muscular dystrophy without intellectual disability ( )
Obsolete familial isolated dilated cardiomyopathy ( )
Dilated cardiomyopathy 1X ( )
Gallbladder cancer ( )
Gallbladder carcinoma ( )
Myopathy ( )
UniProt ID
FKTN_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
2.7.8.-
Pfam ID
PF19737 ; PF04991
Sequence
MSRINKNVVLALLTLTSSAFLLFQLYYYKHYLSTKNGAGLSKSKGSRIGFDSTQWRAVKK
FIMLTSNQNVPVFLIDPLILELINKNFEQVKNTSHGSTSQCKFFCVPRDFTAFALQYHLW
KNEEGWFRIAENMGFQCLKIESKDPRLDGIDSLSGTEIPLHYICKLATHAIHLVVFHERS
GNYLWHGHLRLKEHIDRKFVPFRKLQFGRYPGAFDRPELQQVTVDGLEVLIPKDPMHFVE
EVPHSRFIECRYKEARAFFQQYLDDNTVEAVAFRKSAKELLQLAAKTLNKLGVPFWLSSG
TCLGWYRQCNIIPYSKDVDLGIFIQDYKSDIILAFQDAGLPLKHKFGKVEDSLELSFQGK
DDVKLDVFFFYEETDHMWNGGTQAKTGKKFKYLFPKFTLCWTEFVDMKVHVPCETLEYIE
ANYGKTWKIPVKTWDWKRSPPNVQPNGIWPISEWDEVIQLY
Function
Catalyzes the transfer of a ribitol-phosphate from CDP-ribitol to the distal N-acetylgalactosamine of the phosphorylated O-mannosyl trisaccharide (N-acetylgalactosamine-beta-3-N-acetylglucosamine-beta-4-(phosphate-6-)mannose), a carbohydrate structure present in alpha-dystroglycan (DAG1). This constitutes the first step in the formation of the ribitol 5-phosphate tandem repeat which links the phosphorylated O-mannosyl trisaccharide to the ligand binding moiety composed of repeats of 3-xylosyl-alpha-1,3-glucuronic acid-beta-1. Required for normal location of POMGNT1 in Golgi membranes, and for normal POMGNT1 activity. May interact with and reinforce a large complex encompassing the outside and inside of muscle membranes. Could be involved in brain development (Probable).
Tissue Specificity
Expressed in the retina (at protein level) . Widely expressed with highest expression in brain, heart, pancreas and skeletal muscle . Expressed at similar levels in control fetal and adult brain . Expressed in migrating neurons, including Cajar-Retzius cells and adult cortical neurons, as well as hippocampal pyramidal cells and cerebellar Purkinje cells . No expression observed in the glia limitans, the subpial astrocytes (which contribute to basement membrane formation) or other glial cells .
KEGG Pathway
Mannose type O-glycan biosynthesis (hsa00515 )
Metabolic pathways (hsa01100 )
BioCyc Pathway
MetaCyc:ENSG00000106692-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

42 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Autosomal recessive limb-girdle muscular dystrophy type 2M DISZUNT4 Definitive Autosomal recessive [1]
Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 4 DISGM0K5 Definitive Autosomal recessive [2]
Myopathy caused by variation in FKTN DISXRJUG Definitive Autosomal recessive [3]
Advanced cancer DISAT1Z9 Strong Biomarker [4]
Astrocytoma DISL3V18 Strong Altered Expression [5]
Autosomal recessive limb-girdle muscular dystrophy type 2A DISIHX4S Strong Biomarker [6]
Campomelic dysplasia DISVTW53 Strong Genetic Variation [7]
Cardiac failure DISDC067 Strong Biomarker [8]
Cardiomyopathy DISUPZRG Strong Biomarker [8]
Central core myopathy DIS18AZZ Strong Biomarker [9]
Cobblestone lissencephaly DIS56826 Strong Genetic Variation [10]
Congenital fiber-type disproportion myopathy DISU9T2M Strong Biomarker [9]
Congenital muscular dystrophy DISKY7OY Strong Genetic Variation [10]
Congenital myopathy DISLSK9G Strong Biomarker [9]
Congestive heart failure DIS32MEA Strong Biomarker [8]
Craniometaphyseal dysplasia, autosomal dominant DISU12OO Strong Genetic Variation [7]
Dilated cardiomyopathy DISX608J Strong Genetic Variation [11]
Dilated cardiomyopathy 1A DIS0RK9Z Strong Genetic Variation [11]
Duchenne muscular dystrophy DISRQ3NV Strong Genetic Variation [12]
Familial dilated cardiomyopathy DISBHDU9 Strong GermlineCausalMutation [13]
Hypertrophic cardiomyopathy DISQG2AI Strong Genetic Variation [11]
Limb-girdle muscular dystrophy DISI9Y1Z Strong Genetic Variation [14]
Limb-girdle muscular dystrophy due to POMK deficiency DISM63SY Strong Biomarker [9]
Multiminicore myopathy DISE6VYN Strong Biomarker [9]
Muscular dystrophy DISJD6P7 Strong Genetic Variation [15]
Muscular dystrophy-dystroglycanopathy (congenital with intellectual disability), type B2 DIS2BGID Strong Biomarker [9]
Muscular dystrophy-dystroglycanopathy (congenital with intellectual disability), type B3 DISSP7OL Strong Biomarker [9]
Nemaline myopathy DIS5IYLY Strong Biomarker [9]
Qualitative or quantitative defects of dysferlin DIS59VEJ Strong Biomarker [6]
Rigid spine muscular dystrophy 1 DISHZE8T Strong Biomarker [14]
Gastric cancer DISXGOUK moderate Biomarker [16]
Intellectual disability DISMBNXP moderate Biomarker [14]
Isolated congenital microcephaly DISUXHZ6 moderate Genetic Variation [17]
Stomach cancer DISKIJSX moderate Biomarker [16]
Muscle-eye-brain disease DISJUOQB Supportive Autosomal recessive [18]
Muscular dystrophy-dystroglycanopathy, type A DISZTBC4 Supportive Autosomal recessive [19]
Obsolete congenital muscular dystrophy without intellectual disability DISGKCTZ Supportive Autosomal recessive [20]
Obsolete familial isolated dilated cardiomyopathy DIS4FXO4 Supportive Autosomal dominant [13]
Dilated cardiomyopathy 1X DISXZPMT Limited Autosomal recessive [21]
Gallbladder cancer DISXJUAF Limited Biomarker [22]
Gallbladder carcinoma DISD6ACL Limited Biomarker [22]
Myopathy DISOWG27 Limited Biomarker [23]
------------------------------------------------------------------------------------
⏷ Show the Full List of 42 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
9 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate affects the expression of Ribitol-5-phosphate transferase FKTN (FKTN). [24]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Ribitol-5-phosphate transferase FKTN (FKTN). [25]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Ribitol-5-phosphate transferase FKTN (FKTN). [26]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Ribitol-5-phosphate transferase FKTN (FKTN). [27]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Ribitol-5-phosphate transferase FKTN (FKTN). [28]
Folic acid DMEMBJC Approved Folic acid decreases the expression of Ribitol-5-phosphate transferase FKTN (FKTN). [29]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Ribitol-5-phosphate transferase FKTN (FKTN). [30]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Ribitol-5-phosphate transferase FKTN (FKTN). [31]
chloropicrin DMSGBQA Investigative chloropicrin increases the expression of Ribitol-5-phosphate transferase FKTN (FKTN). [32]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Drug(s)

References

1 Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci Transl Med. 2011 Jan 12;3(65):65ra4. doi: 10.1126/scitranslmed.3001756.
2 A new mutation of the fukutin gene in a non-Japanese patient. Ann Neurol. 2003 Mar;53(3):392-6. doi: 10.1002/ana.10491.
3 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
4 A role of fukutin, a gene responsible for Fukuyama type congenital muscular dystrophy, in cancer cells: a possible role to suppress cell proliferation.Int J Exp Pathol. 2008 Oct;89(5):332-41. doi: 10.1111/j.1365-2613.2008.00599.x.
5 Post-transcriptional regulation of fukutin in an astrocytoma cell line.Int J Exp Pathol. 2012 Feb;93(1):46-55. doi: 10.1111/j.1365-2613.2011.00799.x.
6 Common recessive limb girdle muscular dystrophies differential diagnosis: why and how?.Arq Neuropsiquiatr. 2014 Sep;72(9):721-34. doi: 10.1590/0004-282x20140110.
7 A variant of congenital muscular dystrophy.Brain Dev. 2002 Jan;24(1):24-9. doi: 10.1016/s0387-7604(01)00384-9.
8 Elimination of fukutin reveals cellular and molecular pathomechanisms in muscular dystrophy-associated heart failure.Nat Commun. 2019 Dec 17;10(1):5754. doi: 10.1038/s41467-019-13623-2.
9 Residual laminin-binding activity and enhanced dystroglycan glycosylation by LARGE in novel model mice to dystroglycanopathy.Hum Mol Genet. 2009 Feb 15;18(4):621-31. doi: 10.1093/hmg/ddn387. Epub 2008 Nov 18.
10 Fukutin mutations in non-Japanese patients with congenital muscular dystrophy: less severe mutations predominate in patients with a non-Walker-Warburg phenotype.Neuromuscul Disord. 2011 Jan;21(1):20-30. doi: 10.1016/j.nmd.2010.08.007. Epub 2010 Oct 18.
11 Mutational analysis of fukutin gene in dilated cardiomyopathy and hypertrophic cardiomyopathy.Circ J. 2009 Jan;73(1):158-61. doi: 10.1253/circj.cj-08-0722. Epub 2008 Nov 17.
12 Possible influences on the expression of X chromosome-linked dystrophin abnormalities by heterozygosity for autosomal recessive Fukuyama congenital muscular dystrophy.Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):623-7. doi: 10.1073/pnas.89.2.623.
13 Fukutin gene mutations cause dilated cardiomyopathy with minimal muscle weakness. Ann Neurol. 2006 Nov;60(5):597-602. doi: 10.1002/ana.20973.
14 A new mutation of the fukutin gene causing late-onset limb girdle muscular dystrophy.Neuromuscul Disord. 2013 Jul;23(7):562-7. doi: 10.1016/j.nmd.2013.04.006. Epub 2013 Jun 6.
15 National registry of patients with Fukuyama congenital muscular dystrophy in Japan.Neuromuscul Disord. 2018 Oct;28(10):885-893. doi: 10.1016/j.nmd.2018.08.001. Epub 2018 Aug 10.
16 Characteristic expression of fukutin in gastric cancer among atomic bomb survivors.Oncol Lett. 2017 Feb;13(2):937-941. doi: 10.3892/ol.2016.5520. Epub 2016 Dec 20.
17 Novel mutation in the fukutin gene in an Egyptian family with Fukuyama congenital muscular dystrophy and microcephaly.Gene. 2014 Apr 15;539(2):279-82. doi: 10.1016/j.gene.2014.01.070. Epub 2014 Feb 13.
18 Refining genotype phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain. 2007 Oct;130(Pt 10):2725-35. doi: 10.1093/brain/awm212. Epub 2007 Sep 18.
19 Two new patients bearing mutations in the fukutin gene confirm the relevance of this gene in Walker-Warburg syndrome. Clin Genet. 2008 Feb;73(2):139-45. doi: 10.1111/j.1399-0004.2007.00936.x. Epub 2007 Dec 19.
20 Dystroglycanopathies: coming into focus. Curr Opin Genet Dev. 2011 Jun;21(3):278-85. doi: 10.1016/j.gde.2011.02.001. Epub 2011 Mar 11.
21 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
22 Sequential occurrence of preneoplastic lesions and accumulation of loss of heterozygosity in patients with gallbladder stones suggest causal association with gallbladder cancer.Ann Surg. 2014 Dec;260(6):1073-80. doi: 10.1097/SLA.0000000000000495.
23 Cytidine Diphosphate-Ribitol Analysis for Diagnostics and Treatment Monitoring of Cytidine Diphosphate-l-Ribitol Pyrophosphorylase A Muscular Dystrophy.Clin Chem. 2019 Oct;65(10):1295-1306. doi: 10.1373/clinchem.2019.305391. Epub 2019 Aug 2.
24 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
25 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
26 Blood transcript immune signatures distinguish a subset of people with elevated serum ALT from others given acetaminophen. Clin Pharmacol Ther. 2016 Apr;99(4):432-41.
27 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
28 Minimal peroxide exposure of neuronal cells induces multifaceted adaptive responses. PLoS One. 2010 Dec 17;5(12):e14352. doi: 10.1371/journal.pone.0014352.
29 Folic acid supplementation dysregulates gene expression in lymphoblastoid cells--implications in nutrition. Biochem Biophys Res Commun. 2011 Sep 9;412(4):688-92. doi: 10.1016/j.bbrc.2011.08.027. Epub 2011 Aug 16.
30 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
31 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
32 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.