General Information of Drug Off-Target (DOT) (ID: OTQUX50Z)

DOT Name Low-density lipoprotein receptor class A domain-containing protein 4 (LDLRAD4)
Gene Name LDLRAD4
Related Disease
Advanced cancer ( )
Carcinoma of liver and intrahepatic biliary tract ( )
Liver cancer ( )
Mental disorder ( )
Acute myelogenous leukaemia ( )
Pancreatic cancer ( )
UniProt ID
LRAD4_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00057
Sequence
MPEAGFQATNAFTECKFTCTSGKCLYLGSLVCNQQNDCGDNSDEENCLLVTEHPPPGIFN
SELEFAQIIIIVVVVTVMVVVIVCLLNHYKVSTRSFINRPNQSRRREDGLPQEGCLWPSD
SAAPRLGASEIMHAPRSRDRFTAPSFIQRDRFSRFQPTYPYVQHEIDLPPTISLSDGEEP
PPYQGPCTLQLRDPEQQMELNRESVRAPPNRTIFDSDLIDIAMYSGGPCPPSSNSGISAS
TCSSNGRMEGPPPTYSEVMGHHPGASFLHHQRSNAHRGSRLQFQQNNAESTIVPIKGKDR
KPGNLV
Function
Functions as a negative regulator of TGF-beta signaling and thereby probably plays a role in cell proliferation, differentiation, apoptosis, motility, extracellular matrix production and immunosuppression. In the canonical TGF-beta pathway, ZFYVE9/SARA recruits the intracellular signal transducer and transcriptional modulators SMAD2 and SMAD3 to the TGF-beta receptor. Phosphorylated by the receptor, SMAD2 and SMAD3 then form a heteromeric complex with SMAD4 that translocates to the nucleus to regulate transcription. Through interaction with SMAD2 and SMAD3, LDLRAD4 may compete with ZFYVE9 and SMAD4 and prevent propagation of the intracellular signal.
Tissue Specificity Expressed in lymphocytes.

Molecular Interaction Atlas (MIA) of This DOT

6 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Advanced cancer DISAT1Z9 Strong Biomarker [1]
Carcinoma of liver and intrahepatic biliary tract DIS8WA0W Strong Biomarker [2]
Liver cancer DISDE4BI Strong Biomarker [2]
Mental disorder DIS3J5R8 Strong Biomarker [2]
Acute myelogenous leukaemia DISCSPTN moderate Genetic Variation [3]
Pancreatic cancer DISJC981 moderate Genetic Variation [4]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
18 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Low-density lipoprotein receptor class A domain-containing protein 4 (LDLRAD4). [5]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Low-density lipoprotein receptor class A domain-containing protein 4 (LDLRAD4). [6]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Low-density lipoprotein receptor class A domain-containing protein 4 (LDLRAD4). [7]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Low-density lipoprotein receptor class A domain-containing protein 4 (LDLRAD4). [8]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Low-density lipoprotein receptor class A domain-containing protein 4 (LDLRAD4). [9]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Low-density lipoprotein receptor class A domain-containing protein 4 (LDLRAD4). [10]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Low-density lipoprotein receptor class A domain-containing protein 4 (LDLRAD4). [11]
Selenium DM25CGV Approved Selenium increases the expression of Low-density lipoprotein receptor class A domain-containing protein 4 (LDLRAD4). [12]
Progesterone DMUY35B Approved Progesterone increases the expression of Low-density lipoprotein receptor class A domain-containing protein 4 (LDLRAD4). [13]
Dexamethasone DMMWZET Approved Dexamethasone decreases the expression of Low-density lipoprotein receptor class A domain-containing protein 4 (LDLRAD4). [14]
Demecolcine DMCZQGK Approved Demecolcine increases the expression of Low-density lipoprotein receptor class A domain-containing protein 4 (LDLRAD4). [15]
Rosiglitazone DMILWZR Approved Rosiglitazone increases the expression of Low-density lipoprotein receptor class A domain-containing protein 4 (LDLRAD4). [16]
Amphotericin B DMTAJQE Approved Amphotericin B increases the expression of Low-density lipoprotein receptor class A domain-containing protein 4 (LDLRAD4). [17]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Low-density lipoprotein receptor class A domain-containing protein 4 (LDLRAD4). [19]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Low-density lipoprotein receptor class A domain-containing protein 4 (LDLRAD4). [20]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Low-density lipoprotein receptor class A domain-containing protein 4 (LDLRAD4). [21]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Low-density lipoprotein receptor class A domain-containing protein 4 (LDLRAD4). [15]
biochanin A DM0HPWY Investigative biochanin A decreases the expression of Low-density lipoprotein receptor class A domain-containing protein 4 (LDLRAD4). [22]
------------------------------------------------------------------------------------
⏷ Show the Full List of 18 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Low-density lipoprotein receptor class A domain-containing protein 4 (LDLRAD4). [18]
------------------------------------------------------------------------------------

References

1 TSC22D2 interacts with PKM2 and inhibits cell growth in colorectal cancer.Int J Oncol. 2016 Sep;49(3):1046-56. doi: 10.3892/ijo.2016.3599. Epub 2016 Jul 4.
2 Low density lipoprotein receptor class A domain containing 4 (LDLRAD4) promotes tumorigenesis of hepatic cancer cells.Exp Cell Res. 2017 Nov 15;360(2):189-198. doi: 10.1016/j.yexcr.2017.09.005. Epub 2017 Sep 6.
3 Genome-wide haplotype association study identify the FGFR2 gene as a risk gene for acute myeloid leukemia.Oncotarget. 2017 Jan 31;8(5):7891-7899. doi: 10.18632/oncotarget.13631.
4 Genetic polymorphisms associated with pancreatic cancer survival: a genome-wide association study.Int J Cancer. 2017 Aug 15;141(4):678-686. doi: 10.1002/ijc.30762. Epub 2017 May 15.
5 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
6 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
7 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
8 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
9 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
10 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
11 Long-term estrogen exposure promotes carcinogen bioactivation, induces persistent changes in gene expression, and enhances the tumorigenicity of MCF-7 human breast cancer cells. Toxicol Appl Pharmacol. 2009 Nov 1;240(3):355-66.
12 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
13 Progesterone regulation of implantation-related genes: new insights into the role of oestrogen. Cell Mol Life Sci. 2007 Apr;64(7-8):1009-32.
14 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
15 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
16 PPARgamma controls CD1d expression by turning on retinoic acid synthesis in developing human dendritic cells. J Exp Med. 2006 Oct 2;203(10):2351-62.
17 Differential expression of microRNAs and their predicted targets in renal cells exposed to amphotericin B and its complex with copper (II) ions. Toxicol Mech Methods. 2017 Sep;27(7):537-543. doi: 10.1080/15376516.2017.1333554. Epub 2017 Jun 8.
18 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
19 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
20 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
21 Comparison of transcriptome expression alterations by chronic exposure to low-dose bisphenol A in different subtypes of breast cancer cells. Toxicol Appl Pharmacol. 2019 Dec 15;385:114814. doi: 10.1016/j.taap.2019.114814. Epub 2019 Nov 9.
22 Mechanisms of the growth inhibitory effects of the isoflavonoid biochanin A on LNCaP cells and xenografts. Prostate. 2002 Aug 1;52(3):201-12.