General Information of Drug Off-Target (DOT) (ID: OTRE3O8U)

DOT Name Endothelial PAS domain-containing protein 1 (EPAS1)
Synonyms
EPAS-1; Basic-helix-loop-helix-PAS protein MOP2; Class E basic helix-loop-helix protein 73; bHLHe73; HIF-1-alpha-like factor; HLF; Hypoxia-inducible factor 2-alpha; HIF-2-alpha; HIF2-alpha; Member of PAS protein 2; PAS domain-containing protein 2
Gene Name EPAS1
Related Disease
Erythrocytosis, familial, 4 ( )
Obsolete autosomal dominant secondary polycythemia ( )
UniProt ID
EPAS1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1P97; 2A24; 3F1N; 3F1O; 3F1P; 3H7W; 3H82; 4GHI; 4GS9; 4PKY; 4XT2; 5KIZ; 5TBM; 5UFP; 6BVB; 6CZW; 6D09; 6D0B; 6D0C; 6I7Q; 6I7R; 6X21; 6X28; 6X2H; 6X37; 6X3D; 7Q5V; 7Q5X; 7UJV; 8CK3; 8CK4; 8CK8
Pfam ID
PF11413 ; PF08778 ; PF00989 ; PF14598
Sequence
MTADKEKKRSSSERRKEKSRDAARCRRSKETEVFYELAHELPLPHSVSSHLDKASIMRLA
ISFLRTHKLLSSVCSENESEAEADQQMDNLYLKALEGFIAVVTQDGDMIFLSENISKFMG
LTQVELTGHSIFDFTHPCDHEEIRENLSLKNGSGFGKKSKDMSTERDFFMRMKCTVTNRG
RTVNLKSATWKVLHCTGQVKVYNNCPPHNSLCGYKEPLLSCLIIMCEPIQHPSHMDIPLD
SKTFLSRHSMDMKFTYCDDRITELIGYHPEELLGRSAYEFYHALDSENMTKSHQNLCTKG
QVVSGQYRMLAKHGGYVWLETQGTVIYNPRNLQPQCIMCVNYVLSEIEKNDVVFSMDQTE
SLFKPHLMAMNSIFDSSGKGAVSEKSNFLFTKLKEEPEELAQLAPTPGDAIISLDFGNQN
FEESSAYGKAILPPSQPWATELRSHSTQSEAGSLPAFTVPQAAAPGSTTPSATSSSSSCS
TPNSPEDYYTSLDNDLKIEVIEKLFAMDTEAKDQCSTQTDFNELDLETLAPYIPMDGEDF
QLSPICPEERLLAENPQSTPQHCFSAMTNIFQPLAPVAPHSPFLLDKFQQQLESKKTEPE
HRPMSSIFFDAGSKASLPPCCGQASTPLSSMGGRSNTQWPPDPPLHFGPTKWAVGDQRTE
FLGAAPLGPPVSPPHVSTFKTRSAKGFGARGPDVLSPAMVALSNKLKLKRQLEYEEQAFQ
DLSGGDPPGGSTSHLMWKRMKNLRGGSCPLMPDKPLSANVPNDKFTQNPMRGLGHPLRHL
PLPQPPSAISPGENSKSRFPPQCYATQYQDYSLSSAHKVSGMASRLLGPSFESYLLPELT
RYDCEVNVPVLGSSTLLQGGDLLRALDQAT
Function
Transcription factor involved in the induction of oxygen regulated genes. Heterodimerizes with ARNT; heterodimer binds to core DNA sequence 5'-TACGTG-3' within the hypoxia response element (HRE) of target gene promoters. Regulates the vascular endothelial growth factor (VEGF) expression and seems to be implicated in the development of blood vessels and the tubular system of lung. May also play a role in the formation of the endothelium that gives rise to the blood brain barrier. Potent activator of the Tie-2 tyrosine kinase expression. Activation requires recruitment of transcriptional coactivators such as CREBBP and probably EP300. Interaction with redox regulatory protein APEX1 seems to activate CTAD.
Tissue Specificity Expressed in most tissues, with highest levels in placenta, lung and heart. Selectively expressed in endothelial cells.
KEGG Pathway
Pathways in cancer (hsa05200 )
Re.l cell carcinoma (hsa05211 )
Reactome Pathway
Cellular response to hypoxia (R-HSA-1234174 )
Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha (R-HSA-1234176 )
Transcriptional regulation of pluripotent stem cells (R-HSA-452723 )
PTK6 Expression (R-HSA-8849473 )
Neddylation (R-HSA-8951664 )
Pexophagy (R-HSA-9664873 )
Regulation of gene expression by Hypoxia-inducible Factor (R-HSA-1234158 )

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Erythrocytosis, familial, 4 DISVL7DV Strong Autosomal dominant [1]
Obsolete autosomal dominant secondary polycythemia DISKHT4L Supportive Autosomal dominant [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
37 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [3]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [4]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [5]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [6]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [7]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [8]
Quercetin DM3NC4M Approved Quercetin increases the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [9]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [10]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide increases the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [11]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [12]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [13]
Menadione DMSJDTY Approved Menadione affects the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [14]
Fluorouracil DMUM7HZ Approved Fluorouracil increases the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [15]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [16]
Diclofenac DMPIHLS Approved Diclofenac decreases the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [17]
Piroxicam DMTK234 Approved Piroxicam decreases the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [18]
Dasatinib DMJV2EK Approved Dasatinib increases the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [19]
Ibuprofen DM8VCBE Approved Ibuprofen decreases the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [17]
Ketorolac DMI4EL5 Approved Ketorolac decreases the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [17]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [21]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [22]
GSK525762 DMPAWBN Phase 1 GSK525762 increases the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [24]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [25]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN decreases the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [26]
MG-132 DMKA2YS Preclinical MG-132 increases the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [27]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [29]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [27]
chloropicrin DMSGBQA Investigative chloropicrin affects the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [30]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde decreases the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [27]
Deguelin DMXT7WG Investigative Deguelin decreases the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [31]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A decreases the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [32]
QUERCITRIN DM1DH96 Investigative QUERCITRIN increases the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [33]
cinnamaldehyde DMZDUXG Investigative cinnamaldehyde increases the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [34]
Okadaic acid DM47CO1 Investigative Okadaic acid increases the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [35]
Cycloheximide DMGDA3C Investigative Cycloheximide decreases the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [36]
Galangin DM5TQ2O Investigative Galangin increases the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [9]
I-BET151 DMYRUH2 Investigative I-BET151 increases the expression of Endothelial PAS domain-containing protein 1 (EPAS1). [24]
------------------------------------------------------------------------------------
⏷ Show the Full List of 37 Drug(s)
2 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tempol DMUQH78 Phase 2 Tempol affects the localization of Endothelial PAS domain-containing protein 1 (EPAS1). [20]
Protoporphyrin IX DMWYE7A Investigative Protoporphyrin IX affects the localization of Endothelial PAS domain-containing protein 1 (EPAS1). [37]
------------------------------------------------------------------------------------
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
TAK-243 DM4GKV2 Phase 1 TAK-243 increases the sumoylation of Endothelial PAS domain-containing protein 1 (EPAS1). [23]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Endothelial PAS domain-containing protein 1 (EPAS1). [28]
------------------------------------------------------------------------------------

References

1 The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
2 A gain-of-function mutation in the HIF2A gene in familial erythrocytosis. N Engl J Med. 2008 Jan 10;358(2):162-8. doi: 10.1056/NEJMoa073123.
3 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
4 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
5 Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. Proc Natl Acad Sci U S A. 2005 May 24;102(21):7653-8.
6 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
7 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
8 Epidermal growth factor receptor signalling in human breast cancer cells operates parallel to estrogen receptor alpha signalling and results in tamoxifen insensitive proliferation. BMC Cancer. 2014 Apr 23;14:283.
9 Flavonoids-induced accumulation of hypoxia-inducible factor (HIF)-1alpha/2alpha is mediated through chelation of iron. J Cell Biochem. 2008 Apr 15;103(6):1989-98. doi: 10.1002/jcb.21588.
10 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
11 MS4A3-HSP27 target pathway reveals potential for haematopoietic disorder treatment in alimentary toxic aleukia. Cell Biol Toxicol. 2023 Feb;39(1):201-216. doi: 10.1007/s10565-021-09639-4. Epub 2021 Sep 28.
12 Gene microarray analysis of human renal cell carcinoma: the effects of HDAC inhibition and retinoid treatment. Cancer Biol Ther. 2008 Oct;7(10):1607-18.
13 The contribution of methotrexate exposure and host factors on transcriptional variance in human liver. Toxicol Sci. 2007 Jun;97(2):582-94.
14 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
15 Transcriptional profiling of MCF7 breast cancer cells in response to 5-Fluorouracil: relationship with cell cycle changes and apoptosis, and identification of novel targets of p53. Int J Cancer. 2006 Sep 1;119(5):1164-75.
16 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
17 Ibuprofen-mediated reduction of hypoxia-inducible factors HIF-1alpha and HIF-2alpha in prostate cancer cells. Clin Cancer Res. 2003 Aug 1;9(8):3150-7.
18 Apoptosis induced by piroxicam plus cisplatin combined treatment is triggered by p21 in mesothelioma. PLoS One. 2011;6(8):e23569.
19 Dasatinib reverses cancer-associated fibroblasts (CAFs) from primary lung carcinomas to a phenotype comparable to that of normal fibroblasts. Mol Cancer. 2010 Jun 27;9:168.
20 NADPH oxidase NOX4 supports renal tumorigenesis by promoting the expression and nuclear accumulation of HIF2. Cancer Res. 2014 Jul 1;74(13):3501-3511. doi: 10.1158/0008-5472.CAN-13-2979. Epub 2014 Apr 22.
21 Genome-wide transcriptional and functional analysis of human T lymphocytes treated with benzo[alpha]pyrene. Int J Mol Sci. 2018 Nov 17;19(11).
22 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
23 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
24 The BET inhibitor JQ1 selectively impairs tumour response to hypoxia and downregulates CA9 and angiogenesis in triple negative breast cancer. Oncogene. 2017 Jan 5;36(1):122-132. doi: 10.1038/onc.2016.184. Epub 2016 Jun 13.
25 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
26 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
27 Vulnerability of HIF1 and HIF2 to damage by proteotoxic stressors. Toxicol Appl Pharmacol. 2022 Jun 15;445:116041. doi: 10.1016/j.taap.2022.116041. Epub 2022 Apr 30.
28 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
29 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
30 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
31 Liposomal encapsulation of deguelin: evidence for enhanced antitumor activity in tobacco carcinogen-induced and oncogenic K-ras-induced lung tumorigenesis. Cancer Prev Res (Phila). 2009 Apr;2(4):361-9.
32 Aristolochic acid I and ochratoxin A differentially regulate VEGF expression in porcine kidney epithelial cells--the involvement of SP-1 and HIFs transcription factors. Toxicol Lett. 2011 Jul 28;204(2-3):118-26. doi: 10.1016/j.toxlet.2011.04.022. Epub 2011 Apr 29.
33 Molecular mechanisms of quercitrin-induced apoptosis in non-small cell lung cancer. Arch Med Res. 2014 Aug;45(6):445-54.
34 Comparative DNA microarray analysis of human monocyte derived dendritic cells and MUTZ-3 cells exposed to the moderate skin sensitizer cinnamaldehyde. Toxicol Appl Pharmacol. 2009 Sep 15;239(3):273-83.
35 Whole genome mRNA transcriptomics analysis reveals different modes of action of the diarrheic shellfish poisons okadaic acid and dinophysis toxin-1 versus azaspiracid-1 in Caco-2 cells. Toxicol In Vitro. 2018 Feb;46:102-112.
36 A MALAT1/HIF-2 feedback loop contributes to arsenite carcinogenesis. Oncotarget. 2016 Feb 2;7(5):5769-87. doi: 10.18632/oncotarget.6806.
37 Structural requirements within protoporphyrin IX in the inhibition of heat shock protein 90. Chem Biol Interact. 2013 Jun 25;204(1):49-57. doi: 10.1016/j.cbi.2013.04.006. Epub 2013 Apr 24.