General Information of Drug Off-Target (DOT) (ID: OTTHAIKR)

DOT Name Claudin-16 (CLDN16)
Synonyms Paracellin-1; PCLN-1
Gene Name CLDN16
Related Disease
Advanced cancer ( )
Amelogenesis imperfecta ( )
Amyloidosis ( )
Breast cancer ( )
Breast carcinoma ( )
Chronic renal failure ( )
End-stage renal disease ( )
Kidney failure ( )
Lung cancer ( )
Lung carcinoma ( )
Neoplasm ( )
Nephropathy ( )
Renal hypomagnesemia 2 ( )
Renal hypomagnesemia 3 ( )
Rickets ( )
Chronic kidney disease ( )
Dent disease ( )
Intestinal hypomagnesemia 1 ( )
High blood pressure ( )
Thyroid gland papillary carcinoma ( )
UniProt ID
CLD16_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00822
Sequence
MRDLLQYIACFFAFFSAGFLIVATWTDCWMVNADDSLEVSTKCRGLWWECVTNAFDGIRT
CDEYDSILAEHPLKLVVTRALMITADILAGFGFLTLLLGLDCVKFLPDEPYIKVRICFVA
GATLLIAGTPGIIGSVWYAVDVYVERSTLVLHNIFLGIQYKFGWSCWLGMAGSLGCFLAG
AVLTCCLYLFKDVGPERNYPYSLRKAYSAAGVSMAKSYSAPRTETAKMYAVDTRV
Function
Plays a major role in tight junction-specific obliteration of the intercellular space, through calcium-independent cell-adhesion activity. Involved in paracellular magnesium reabsorption. Required for a selective paracellular conductance. May form, alone or in partnership with other constituents, an intercellular pore permitting paracellular passage of magnesium and calcium ions down their electrochemical gradients. Alternatively, it could be a sensor of magnesium concentration that could alter paracellular permeability mediated by other factors.
Tissue Specificity Kidney-specific, including the thick ascending limb of Henle (TAL).
KEGG Pathway
Cell adhesion molecules (hsa04514 )
Tight junction (hsa04530 )
Leukocyte transendothelial migration (hsa04670 )
Pathogenic Escherichia coli infection (hsa05130 )
Hepatitis C (hsa05160 )
Reactome Pathway
Tight junction interactions (R-HSA-420029 )

Molecular Interaction Atlas (MIA) of This DOT

20 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Advanced cancer DISAT1Z9 Strong Altered Expression [1]
Amelogenesis imperfecta DISGYR9E Strong Genetic Variation [2]
Amyloidosis DISHTAI2 Strong Biomarker [3]
Breast cancer DIS7DPX1 Strong Altered Expression [1]
Breast carcinoma DIS2UE88 Strong Altered Expression [1]
Chronic renal failure DISGG7K6 Strong Genetic Variation [4]
End-stage renal disease DISXA7GG Strong Genetic Variation [4]
Kidney failure DISOVQ9P Strong Genetic Variation [5]
Lung cancer DISCM4YA Strong Genetic Variation [6]
Lung carcinoma DISTR26C Strong Genetic Variation [6]
Neoplasm DISZKGEW Strong Altered Expression [1]
Nephropathy DISXWP4P Strong Biomarker [7]
Renal hypomagnesemia 2 DISAK1QC Strong Biomarker [8]
Renal hypomagnesemia 3 DIS9K58C Strong Autosomal recessive [9]
Rickets DISH89YF Strong Genetic Variation [10]
Chronic kidney disease DISW82R7 moderate Genetic Variation [11]
Dent disease DISRDLFN moderate Biomarker [12]
Intestinal hypomagnesemia 1 DISKMKFJ moderate Genetic Variation [13]
High blood pressure DISY2OHH Disputed Biomarker [14]
Thyroid gland papillary carcinoma DIS48YMM Limited Altered Expression [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 20 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
8 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Claudin-16 (CLDN16). [16]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Claudin-16 (CLDN16). [17]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Claudin-16 (CLDN16). [18]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Claudin-16 (CLDN16). [19]
Ethanol DMDRQZU Approved Ethanol increases the expression of Claudin-16 (CLDN16). [20]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Claudin-16 (CLDN16). [18]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Claudin-16 (CLDN16). [21]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Claudin-16 (CLDN16). [22]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)

References

1 Claudin-16/paracellin-1, cloning, expression, and its role in tight junction functions in cancer and endothelial cells.Methods Mol Biol. 2011;762:383-407. doi: 10.1007/978-1-61779-185-7_28.
2 Claudin-16 Deficiency Impairs Tight Junction Function in Ameloblasts, Leading to Abnormal Enamel Formation.J Bone Miner Res. 2016 Mar;31(3):498-513. doi: 10.1002/jbmr.2726. Epub 2015 Oct 20.
3 Sex-specific genetic predictors of Alzheimer's disease biomarkers.Acta Neuropathol. 2018 Dec;136(6):857-872. doi: 10.1007/s00401-018-1881-4. Epub 2018 Jul 2.
4 Follow-up of five patients with FHHNC due to mutations in the Paracellin-1 gene.Pediatr Nephrol. 2002 Aug;17(8):602-8. doi: 10.1007/s00467-002-0884-4. Epub 2002 Jun 11.
5 Familial hypomagnesemia with hypercalciuria and nephrocalcinosis: blocking endocytosis restores surface expression of a novel Claudin-16 mutant that lacks the entire C-terminal cytosolic tail.Hum Mol Genet. 2006 Apr 1;15(7):1049-58. doi: 10.1093/hmg/ddl020. Epub 2006 Feb 24.
6 Genome-wide analysis of expression quantitative trait loci identified potential lung cancer susceptibility variants among Asian populations.Carcinogenesis. 2019 Apr 29;40(2):263-268. doi: 10.1093/carcin/bgy165.
7 Down-regulation of magnesium transporting molecule, claudin-16, as a possible cause of hypermagnesiuria with the development of tubulo-interstitial nephropathy.Magnes Res. 2018 Feb 1;31(1):11-23. doi: 10.1684/mrh.2018.0434.
8 Disorders of renal magnesium handling explain renal magnesium transport.J Nephrol. 2007 Sep-Oct;20(5):507-10.
9 Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science. 1999 Jul 2;285(5424):103-6. doi: 10.1126/science.285.5424.103.
10 Genetic causes of hypercalciuric nephrolithiasis.Pediatr Nephrol. 2009 Dec;24(12):2321-32. doi: 10.1007/s00467-008-0807-0. Epub 2008 Apr 30.
11 Identification of the first large deletion in the CLDN16 gene in a patient with FHHNC and late-onset of chronic kidney disease: case report.BMC Nephrol. 2015 Jul 2;16:92. doi: 10.1186/s12882-015-0079-4.
12 Inherited hypercalciuric syndromes: Dent's disease (CLC-5) and familial hypomagnesemia with hypercalciuria (paracellin-1).Semin Nephrol. 2004 Jan;24(1):55-60. doi: 10.1053/j.semnephrol.2003.08.011.
13 Clinical and molecular characterization of Turkish patients with familial hypomagnesaemia: novel mutations in TRPM6 and CLDN16 genes.Nephrol Dial Transplant. 2012 Feb;27(2):667-73. doi: 10.1093/ndt/gfr300. Epub 2011 Jun 9.
14 Dysfunction of paracellin-1 by dephosphorylation in Dahl salt-sensitive hypertensive rats.J Physiol Sci. 2006 Oct;56(5):379-83. doi: 10.2170/physiolsci.SC008906. Epub 2006 Sep 9.
15 Gene expression in poorly differentiated papillary thyroid carcinomas.Thyroid. 2006 Feb;16(2):161-75. doi: 10.1089/thy.2006.16.161.
16 Evidence for a role of claudin 2 as a proximal tubular stress responsive paracellular water channel. Toxicol Appl Pharmacol. 2014 Sep 1;279(2):163-72.
17 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
18 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
19 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
20 Chronic ethanol exposure increases goosecoid (GSC) expression in human embryonic carcinoma cell differentiation. J Appl Toxicol. 2014 Jan;34(1):66-75.
21 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
22 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.