General Information of Drug Off-Target (DOT) (ID: OTVFJJ91)

DOT Name Protein S100-A14 (S100A14)
Synonyms S100 calcium-binding protein A14; S114
Gene Name S100A14
Related Disease
Epithelial ovarian cancer ( )
Lung adenocarcinoma ( )
Lung cancer ( )
Lung carcinoma ( )
Ovarian cancer ( )
Ovarian neoplasm ( )
Adenocarcinoma ( )
Breast cancer ( )
Carcinoma of esophagus ( )
Dermatitis ( )
Esophageal cancer ( )
Esophageal squamous cell carcinoma ( )
Hepatocellular carcinoma ( )
Huntington disease ( )
Neoplasm ( )
Neoplasm of esophagus ( )
Non-small-cell lung cancer ( )
Oral cancer ( )
Pancreatic adenocarcinoma ( )
Psoriasis ( )
Skin disease ( )
Squamous cell carcinoma ( )
Breast carcinoma ( )
Gastric cancer ( )
Oral cavity carcinoma ( )
Stomach cancer ( )
Advanced cancer ( )
UniProt ID
S10AE_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2M0R
Pfam ID
PF01023
Sequence
MGQCRSANAEDAQEFSDVERAIETLIKNFHQYSVEGGKETLTPSELRDLVTQQLPHLMPS
NCGLEEKIANLGSCNDSKLEFRSFWELIGEAAKSVKLERPVRGH
Function
Modulates P53/TP53 protein levels, and thereby plays a role in the regulation of cell survival and apoptosis. Depending on the context, it can promote cell proliferation or apoptosis. Plays a role in the regulation of cell migration by modulating the levels of MMP2, a matrix protease that is under transcriptional control of P53/TP53. Does not bind calcium.
Tissue Specificity
Expressed at highest levels in colon and at moderate levels in thymus, kidney, liver, small intestine, and lung. Low expression in heart and no expression is seen in brain, skeletal muscle, spleen, placenta and peripheral blood leukocytes.

Molecular Interaction Atlas (MIA) of This DOT

27 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Epithelial ovarian cancer DIS56MH2 Definitive Altered Expression [1]
Lung adenocarcinoma DISD51WR Definitive Altered Expression [2]
Lung cancer DISCM4YA Definitive Posttranslational Modification [3]
Lung carcinoma DISTR26C Definitive Posttranslational Modification [3]
Ovarian cancer DISZJHAP Definitive Biomarker [1]
Ovarian neoplasm DISEAFTY Definitive Biomarker [1]
Adenocarcinoma DIS3IHTY Strong Genetic Variation [3]
Breast cancer DIS7DPX1 Strong Altered Expression [4]
Carcinoma of esophagus DISS6G4D Strong Altered Expression [5]
Dermatitis DISY5SZC Strong Genetic Variation [6]
Esophageal cancer DISGB2VN Strong Altered Expression [5]
Esophageal squamous cell carcinoma DIS5N2GV Strong Genetic Variation [7]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [8]
Huntington disease DISQPLA4 Strong Biomarker [9]
Neoplasm DISZKGEW Strong Altered Expression [4]
Neoplasm of esophagus DISOLKAQ Strong Altered Expression [5]
Non-small-cell lung cancer DIS5Y6R9 Strong Biomarker [10]
Oral cancer DISLD42D Strong Genetic Variation [11]
Pancreatic adenocarcinoma DISKHX7S Strong Altered Expression [12]
Psoriasis DIS59VMN Strong Altered Expression [6]
Skin disease DISDW8R6 Strong Altered Expression [6]
Squamous cell carcinoma DISQVIFL Strong Biomarker [13]
Breast carcinoma DIS2UE88 moderate Altered Expression [4]
Gastric cancer DISXGOUK moderate Biomarker [14]
Oral cavity carcinoma DISZXMVL moderate Biomarker [15]
Stomach cancer DISKIJSX moderate Biomarker [14]
Advanced cancer DISAT1Z9 Limited Biomarker [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 27 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Arsenic trioxide DM61TA4 Approved Protein S100-A14 (S100A14) decreases the response to substance of Arsenic trioxide. [28]
------------------------------------------------------------------------------------
10 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Protein S100-A14 (S100A14). [17]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Protein S100-A14 (S100A14). [18]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Protein S100-A14 (S100A14). [19]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Protein S100-A14 (S100A14). [20]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Protein S100-A14 (S100A14). [21]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Protein S100-A14 (S100A14). [22]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Protein S100-A14 (S100A14). [23]
Nicotine DMWX5CO Approved Nicotine increases the expression of Protein S100-A14 (S100A14). [24]
Azacitidine DMTA5OE Approved Azacitidine decreases the expression of Protein S100-A14 (S100A14). [25]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN increases the expression of Protein S100-A14 (S100A14). [27]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Protein S100-A14 (S100A14). [26]
------------------------------------------------------------------------------------

References

1 The role of S100A14 in epithelial ovarian tumors.Oncotarget. 2014 Jun 15;5(11):3482-96. doi: 10.18632/oncotarget.1947.
2 Overexpression of S100A14 contributes to malignant progression and predicts poor prognosis of lung adenocarcinoma.Thorac Cancer. 2018 Jul;9(7):827-835. doi: 10.1111/1759-7714.12654. Epub 2018 May 7.
3 Increased S100A15 expression and decreased DNA methylation of its gene promoter are involved in high metastasis potential and poor outcome of lung adenocarcinoma.Oncotarget. 2017 Jul 11;8(28):45710-45724. doi: 10.18632/oncotarget.17391.
4 Prognostic and clinicopathological significance of S100A14 expression in cancer patients: A meta-analysis.Medicine (Baltimore). 2019 Jul;98(28):e16356. doi: 10.1097/MD.0000000000016356.
5 S100A14: novel modulator of terminal differentiation in esophageal cancer.Mol Cancer Res. 2013 Dec;11(12):1542-53. doi: 10.1158/1541-7786.MCR-13-0317. Epub 2013 Oct 9.
6 Human S100A15 splice variants are differentially expressed in inflammatory skin diseases and regulated through Th1 cytokines and calcium.Exp Dermatol. 2007 Aug;16(8):685-91. doi: 10.1111/j.1600-0625.2007.00587.x.
7 S100A14 rs11548103 G>A polymorphism is associated with a decreased risk of esophageal cancer in a Chinese population.Oncotarget. 2017 Sep 14;8(49):86917-86923. doi: 10.18632/oncotarget.20868. eCollection 2017 Oct 17.
8 S100A14 promotes the growth and metastasis of hepatocellular carcinoma.Asian Pac J Cancer Prev. 2013;14(6):3831-6. doi: 10.7314/apjcp.2013.14.6.3831.
9 Mapping of D4S98/S114/S113 confines the Huntington's defect to a reduced physical region at the telomere of chromosome 4.Nucleic Acids Res. 1988 Dec 23;16(24):11769-80. doi: 10.1093/nar/16.24.11769.
10 Peripheral immune cell gene expression changes in advanced non-small cell lung cancer patients treated with first line combination chemotherapy.PLoS One. 2013;8(2):e57053. doi: 10.1371/journal.pone.0057053. Epub 2013 Feb 25.
11 Profiling of chromosomal changes in potentially malignant and malignant oral mucosal lesions from South and South-East Asia using array-comparative genomic hybridization.Cancer Genomics Proteomics. 2014 May-Jun;11(3):127-40.
12 Weighted Gene Co-Expression Network Analysis Reveals Six Hub Genes Involved in and Tight Junction Function in Pancreatic Adenocarcinoma and their Potential Use in Prognosis.Genet Test Mol Biomarkers. 2019 Dec;23(12):829-836. doi: 10.1089/gtmb.2019.0122.
13 Inflammation-mediated skin tumorigenesis induced by epidermal c-Fos.Genes Dev. 2013 Sep 15;27(18):1959-73. doi: 10.1101/gad.223339.113. Epub 2013 Sep 12.
14 Calcium-binding protein S100A14 induces differentiation and suppresses metastasis in gastric cancer.Cell Death Dis. 2017 Jul 20;8(7):e2938. doi: 10.1038/cddis.2017.297.
15 S100A14 inhibits proliferation of oral carcinoma derived cells through G1-arrest.Oral Oncol. 2012 Mar;48(3):219-25. doi: 10.1016/j.oraloncology.2011.10.001. Epub 2011 Oct 26.
16 Expression profile and functional role of S100A14 in human cancer.Oncotarget. 2019 Apr 26;10(31):2996-3012. doi: 10.18632/oncotarget.26861. eCollection 2019 Apr 26.
17 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
18 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
19 Retinoic acid receptor alpha amplifications and retinoic acid sensitivity in breast cancers. Clin Breast Cancer. 2013 Oct;13(5):401-8.
20 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
21 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
22 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
23 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
24 Characterizing the genetic basis for nicotine induced cancer development: a transcriptome sequencing study. PLoS One. 2013 Jun 18;8(6):e67252.
25 The effect of DNA methylation inhibitor 5-Aza-2'-deoxycytidine on human endometrial stromal cells. Hum Reprod. 2010 Nov;25(11):2859-69.
26 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
27 Chemical stresses fail to mimic the unfolded protein response resulting from luminal load with unfolded polypeptides. J Biol Chem. 2018 Apr 13;293(15):5600-5612.
28 The NRF2-mediated oxidative stress response pathway is associated with tumor cell resistance to arsenic trioxide across the NCI-60 panel. BMC Med Genomics. 2010 Aug 13;3:37. doi: 10.1186/1755-8794-3-37.