General Information of Drug Off-Target (DOT) (ID: OTX3BFV4)

DOT Name Protocadherin-9 (PCDH9)
Gene Name PCDH9
Related Disease
Auditory neuropathy ( )
Autosomal dominant auditory neuropathy 1 ( )
Advanced cancer ( )
Autism ( )
Autism spectrum disorder ( )
Chronic obstructive pulmonary disease ( )
Epithelial ovarian cancer ( )
Glioma ( )
Hepatocellular carcinoma ( )
Major depressive disorder ( )
Malignant glioma ( )
Obesity ( )
Ovarian cancer ( )
Ovarian neoplasm ( )
Prostate cancer ( )
Prostate carcinoma ( )
Hirschsprung disease ( )
Neoplasm ( )
Gastric cancer ( )
Stomach cancer ( )
UniProt ID
PCDH9_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2EE0
Pfam ID
PF00028 ; PF08266 ; PF08374
Sequence
MDLRDFYLLAALIACLRLDSAIAQELIYTIREELPENVPIGNIPKDLNISHINAATGTSA
SLVYRLVSKAGDAPLVKVSSSTGEIFTTSNRIDREKLCAGASYAEENECFFELEVVILPN
DFFRLIKIKIIVKDTNDNAPMFPSPVINISIPENTLINSRFPIPSATDPDTGFNGVQHYE
LLNGQSVFGLDIVETPEGEKWPQLIVQQNLDREQKDTYVMKIKVEDGGTPQKSSTAILQV
TVSDVNDNRPVFKEGQVEVHIPENAPVGTSVIQLHATDADIGSNAEIRYIFGAQVAPATK
RLFALNNTTGLITVQRSLDREETAIHKVTVLASDGSSTPARATVTINVTDVNDNPPNIDL
RYIISPINGTVYLSEKDPVNTKIALITVSDKDTDVNGKVICFIEREVPFHLKAVYDNQYL
LETSSLLDYEGTKEFSFKIVASDSGKPSLNQTALVRVKLEDENDNPPIFNQPVIELSVSE
NNRRGLYLTTISATDEDSGKNADIVYQLGPNASFFDLDRKTGVLTASRVFDREEQERFIF
TVTARDNGTPPLQSQAAVIVTVLDENDNSPKFTHNHFQFFVSENLPKYSTVGVITVTDAD
AGENKAVTLSILNDNDNFVLDPYSGVIKSNVSFDREQQSSYTFDVKATDGGQPPRSSTAK
VTINVMDVNDNSPVVISPPSNTSFKLVPLSAIPGSVVAEVFAVDVDTGMNAELKYTIVSG
NNKGLFRIDPVTGNITLEEKPAPTDVGLHRLVVNISDLGYPKSLHTLVLVFLYVNDTAGN
ASYIYDLIRRTMETPLDRNIGDSSQPYQNEDYLTIMIAIIAGAMVVIVVIFVTVLVRCRH
ASRFKAAQRSKQGAEWMSPNQENKQNKKKKRKKRKSPKSSLLNFVTIEESKPDDAVHEPI
NGTISLPAELEEQSIGRFDWGPAPPTTFKPNSPDLAKHYKSASPQPAFHLKPDTPVSVKK
HHVIQELPLDNTFVGGCDTLSKRSSTSSDHFSASECSSQGGFKTKGPLHTRQCNSHSKSD
NIPVTPQKCPSSTGFHIQENEESHYESQRRVTFHLPDGSQESCSDSGLGDHEPVGSGTLI
SHPLPLVQPQDEFYDQASPDKRTEADGNSDPNSDGPLGPRGLAEATEMCTQECLVLGHSD
NCWMPPGLGPYQHPKSPLSTFAPQKEWVKKDKLVNGHTLTRAWKEDSNRNQFNDRKQYGS
NEGHFNNGSHMTDIPLANLKSYKQAGGATESPKEHQL
Function Potential calcium-dependent cell-adhesion protein.

Molecular Interaction Atlas (MIA) of This DOT

20 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Auditory neuropathy DISM6GAU Definitive Genetic Variation [1]
Autosomal dominant auditory neuropathy 1 DISPY0YJ Definitive Genetic Variation [1]
Advanced cancer DISAT1Z9 Strong Biomarker [2]
Autism DISV4V1Z Strong Biomarker [3]
Autism spectrum disorder DISXK8NV Strong Biomarker [4]
Chronic obstructive pulmonary disease DISQCIRF Strong Genetic Variation [5]
Epithelial ovarian cancer DIS56MH2 Strong Biomarker [6]
Glioma DIS5RPEH Strong Altered Expression [7]
Hepatocellular carcinoma DIS0J828 Strong Genetic Variation [8]
Major depressive disorder DIS4CL3X Strong Genetic Variation [9]
Malignant glioma DISFXKOV Strong Altered Expression [7]
Obesity DIS47Y1K Strong Genetic Variation [10]
Ovarian cancer DISZJHAP Strong Biomarker [6]
Ovarian neoplasm DISEAFTY Strong Biomarker [6]
Prostate cancer DISF190Y Strong Biomarker [11]
Prostate carcinoma DISMJPLE Strong Biomarker [11]
Hirschsprung disease DISUUSM1 moderate Biomarker [12]
Neoplasm DISZKGEW moderate Biomarker [11]
Gastric cancer DISXGOUK Limited Biomarker [2]
Stomach cancer DISKIJSX Limited Biomarker [2]
------------------------------------------------------------------------------------
⏷ Show the Full List of 20 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Protocadherin-9 (PCDH9). [13]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Protocadherin-9 (PCDH9). [19]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Protocadherin-9 (PCDH9). [24]
------------------------------------------------------------------------------------
12 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Protocadherin-9 (PCDH9). [14]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Protocadherin-9 (PCDH9). [15]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Protocadherin-9 (PCDH9). [16]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Protocadherin-9 (PCDH9). [17]
Estradiol DMUNTE3 Approved Estradiol affects the expression of Protocadherin-9 (PCDH9). [18]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Protocadherin-9 (PCDH9). [20]
Permethrin DMZ0Q1G Approved Permethrin decreases the expression of Protocadherin-9 (PCDH9). [21]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Protocadherin-9 (PCDH9). [22]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Protocadherin-9 (PCDH9). [23]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Protocadherin-9 (PCDH9). [25]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Protocadherin-9 (PCDH9). [26]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Protocadherin-9 (PCDH9). [27]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Drug(s)

References

1 Pure monosomy and pure trisomy of 13q21.2-31.1 consequent to a familial insertional translocation: exclusion of PCDH9 as the responsible gene for autosomal dominant auditory neuropathy (AUNA1).Am J Med Genet A. 2009 May;149A(5):906-13. doi: 10.1002/ajmg.a.32754.
2 Loss of PCDH9 is associated with the differentiation of tumor cells and metastasis and predicts poor survival in gastric cancer.Clin Exp Metastasis. 2015 Jun;32(5):417-28. doi: 10.1007/s10585-015-9712-7. Epub 2015 Apr 14.
3 A genome-wide survey of transgenerational genetic effects in autism.PLoS One. 2013 Oct 24;8(10):e76978. doi: 10.1371/journal.pone.0076978. eCollection 2013.
4 Structural variation of chromosomes in autism spectrum disorder.Am J Hum Genet. 2008 Feb;82(2):477-88. doi: 10.1016/j.ajhg.2007.12.009. Epub 2008 Jan 17.
5 The genetics of smoking in individuals with chronic obstructive pulmonary disease.Respir Res. 2018 Apr 10;19(1):59. doi: 10.1186/s12931-018-0762-7.
6 MiR-200a-3p promoted the malignant behaviors of ovarian cancer cells through regulating PCDH9.Onco Targets Ther. 2019 Oct 8;12:8329-8338. doi: 10.2147/OTT.S220339. eCollection 2019.
7 Dual inhibition of PCDH9 expression by miR-215-5p up-regulation in gliomas.Oncotarget. 2017 Feb 7;8(6):10287-10297. doi: 10.18632/oncotarget.14396.
8 Genomewide association study for C-reactive protein in Indians replicates known associations of common variants.J Genet. 2019 Mar;98:20.
9 Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions.Nat Neurosci. 2019 Mar;22(3):343-352. doi: 10.1038/s41593-018-0326-7. Epub 2019 Feb 4.
10 A genome-wide association study on obesity and obesity-related traits.PLoS One. 2011 Apr 28;6(4):e18939. doi: 10.1371/journal.pone.0018939.
11 Whole-genome and Transcriptome Sequencing of Prostate Cancer Identify New Genetic Alterations Driving Disease Progression.Eur Urol. 2018 Mar;73(3):322-339. doi: 10.1016/j.eururo.2017.08.027. Epub 2017 Sep 18.
12 Identification of two novel PCDHA9 mutations associated with Hirschsprung's disease.Gene. 2018 Jun 5;658:96-104. doi: 10.1016/j.gene.2018.02.054. Epub 2018 Feb 22.
13 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
14 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
15 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
16 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
17 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
18 Identification of novel low-dose bisphenol a targets in human foreskin fibroblast cells derived from hypospadias patients. PLoS One. 2012;7(5):e36711. doi: 10.1371/journal.pone.0036711. Epub 2012 May 4.
19 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
20 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
21 Exposure to Insecticides Modifies Gene Expression and DNA Methylation in Hematopoietic Tissues In Vitro. Int J Mol Sci. 2023 Mar 26;24(7):6259. doi: 10.3390/ijms24076259.
22 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
23 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
24 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
25 Characterization of the Molecular Alterations Induced by the Prolonged Exposure of Normal Colon Mucosa and Colon Cancer Cells to Low-Dose Bisphenol A. Int J Mol Sci. 2022 Oct 1;23(19):11620. doi: 10.3390/ijms231911620.
26 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
27 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.