General Information of Drug Off-Target (DOT) (ID: OTY3BOF6)

DOT Name Zinc phosphodiesterase ELAC protein 2 (ELAC2)
Synonyms EC 3.1.26.11; ElaC homolog protein 2; Heredity prostate cancer protein 2; Ribonuclease Z 2; RNase Z 2; tRNA 3 endonuclease 2; tRNase Z 2
Gene Name ELAC2
Related Disease
Mitochondrial complex I deficiency, nuclear type 1 ( )
Mitochondrial disease ( )
Advanced cancer ( )
Benign prostatic hyperplasia ( )
Breast carcinoma ( )
Combined oxidative phosphorylation defect type 17 ( )
Familial prostate carcinoma ( )
Hereditary chronic pancreatitis ( )
Intellectual disability ( )
Metastatic prostate carcinoma ( )
Mitochondrial complex I deficiency ( )
Non-small-cell lung cancer ( )
Pure red-cell aplasia ( )
Small-cell lung cancer ( )
Benign neoplasm ( )
Neoplasm ( )
Dilated cardiomyopathy ( )
Hypertrophic cardiomyopathy ( )
Lactic acidosis ( )
Prostate neoplasm ( )
UniProt ID
RNZ2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
3.1.26.11
Pfam ID
PF12706 ; PF13691
Sequence
MWALCSLLRSAAGRTMSQGRTISQAPARRERPRKDPLRHLRTREKRGPSGCSGGPNTVYL
QVVAAGSRDSGAALYVFSEFNRYLFNCGEGVQRLMQEHKLKVARLDNIFLTRMHWSNVGG
LSGMILTLKETGLPKCVLSGPPQLEKYLEAIKIFSGPLKGIELAVRPHSAPEYEDETMTV
YQIPIHSEQRRGKHQPWQSPERPLSRLSPERSSDSESNENEPHLPHGVSQRRGVRDSSLV
VAFICKLHLKRGNFLVLKAKEMGLPVGTAAIAPIIAAVKDGKSITHEGREILAEELCTPP
DPGAAFVVVECPDESFIQPICENATFQRYQGKADAPVALVVHMAPASVLVDSRYQQWMER
FGPDTQHLVLNENCASVHNLRSHKIQTQLNLIHPDIFPLLTSFRCKKEGPTLSVPMVQGE
CLLKYQLRPRREWQRDAIITCNPEEFIVEALQLPNFQQSVQEYRRSAQDGPAPAEKRSQY
PEIIFLGTGSAIPMKIRNVSATLVNISPDTSLLLDCGEGTFGQLCRHYGDQVDRVLGTLA
AVFVSHLHADHHTGLPSILLQRERALASLGKPLHPLLVVAPNQLKAWLQQYHNQCQEVLH
HISMIPAKCLQEGAEISSPAVERLISSLLRTCDLEEFQTCLVRHCKHAFGCALVHTSGWK
VVYSGDTMPCEALVRMGKDATLLIHEATLEDGLEEEAVEKTHSTTSQAISVGMRMNAEFI
MLNHFSQRYAKVPLFSPNFSEKVGVAFDHMKVCFGDFPTMPKLIPPLKALFAGDIEEMEE
RREKRELRQVRAALLSRELAGGLEDGEPQQKRAHTEEPQAKKVRAQ
Function
Zinc phosphodiesterase, which displays mitochondrial tRNA 3'-processing endonuclease activity. Involved in tRNA maturation, by removing a 3'-trailer from precursor tRNA. Associates with mitochondrial DNA complexes at the nucleoids to initiate RNA processing and ribosome assembly.
Tissue Specificity
Widely expressed. Highly expressed in heart, placenta, liver, skeletal muscle, kidney, pancreas, testis and ovary. Weakly expressed in brain, lung, spleen, thymus, prostate, small intestine, colon and leukocytes.
Reactome Pathway
tRNA processing in the mitochondrion (R-HSA-6785470 )
rRNA processing in the mitochondrion (R-HSA-8868766 )
tRNA-derived small RNA (tsRNA or tRNA-related fragment, tRF) biogenesis (R-HSA-9708296 )
tRNA processing in the nucleus (R-HSA-6784531 )

Molecular Interaction Atlas (MIA) of This DOT

20 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Mitochondrial complex I deficiency, nuclear type 1 DISCPLX4 Definitive Autosomal recessive [1]
Mitochondrial disease DISKAHA3 Definitive Autosomal recessive [2]
Advanced cancer DISAT1Z9 Strong Biomarker [3]
Benign prostatic hyperplasia DISI3CW2 Strong Biomarker [3]
Breast carcinoma DIS2UE88 Strong Altered Expression [4]
Combined oxidative phosphorylation defect type 17 DISAW6AL Strong Autosomal recessive [5]
Familial prostate carcinoma DISL9KNO Strong Biomarker [6]
Hereditary chronic pancreatitis DISF0J1Q Strong Biomarker [7]
Intellectual disability DISMBNXP Strong Genetic Variation [8]
Metastatic prostate carcinoma DISVBEZ9 Strong Genetic Variation [9]
Mitochondrial complex I deficiency DIS13M7V Strong Biomarker [8]
Non-small-cell lung cancer DIS5Y6R9 Strong Biomarker [10]
Pure red-cell aplasia DIST91OT Strong Genetic Variation [11]
Small-cell lung cancer DISK3LZD Strong Biomarker [10]
Benign neoplasm DISDUXAD moderate Genetic Variation [12]
Neoplasm DISZKGEW moderate Altered Expression [13]
Dilated cardiomyopathy DISX608J Disputed Genetic Variation [14]
Hypertrophic cardiomyopathy DISQG2AI Limited Genetic Variation [15]
Lactic acidosis DISZI1ZK Limited Genetic Variation [15]
Prostate neoplasm DISHDKGQ Limited Genetic Variation [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 20 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate affects the expression of Zinc phosphodiesterase ELAC protein 2 (ELAC2). [17]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Zinc phosphodiesterase ELAC protein 2 (ELAC2). [18]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Zinc phosphodiesterase ELAC protein 2 (ELAC2). [19]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Zinc phosphodiesterase ELAC protein 2 (ELAC2). [20]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Zinc phosphodiesterase ELAC protein 2 (ELAC2). [21]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Zinc phosphodiesterase ELAC protein 2 (ELAC2). [22]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Zinc phosphodiesterase ELAC protein 2 (ELAC2). [24]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Zinc phosphodiesterase ELAC protein 2 (ELAC2). [25]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Zinc phosphodiesterase ELAC protein 2 (ELAC2). [21]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Zinc phosphodiesterase ELAC protein 2 (ELAC2). [30]
[3H]methyltrienolone DMTSGOW Investigative [3H]methyltrienolone increases the expression of Zinc phosphodiesterase ELAC protein 2 (ELAC2). [31]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)
5 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Zinc phosphodiesterase ELAC protein 2 (ELAC2). [23]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Zinc phosphodiesterase ELAC protein 2 (ELAC2). [27]
TAK-243 DM4GKV2 Phase 1 TAK-243 increases the sumoylation of Zinc phosphodiesterase ELAC protein 2 (ELAC2). [28]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Zinc phosphodiesterase ELAC protein 2 (ELAC2). [29]
Coumarin DM0N8ZM Investigative Coumarin affects the phosphorylation of Zinc phosphodiesterase ELAC protein 2 (ELAC2). [29]
------------------------------------------------------------------------------------
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
DNCB DMDTVYC Phase 2 DNCB affects the binding of Zinc phosphodiesterase ELAC protein 2 (ELAC2). [26]
------------------------------------------------------------------------------------

References

1 ELAC2 mutations cause a mitochondrial RNA processing defect associated with hypertrophic cardiomyopathy. Am J Hum Genet. 2013 Aug 8;93(2):211-23. doi: 10.1016/j.ajhg.2013.06.006. Epub 2013 Jul 11.
2 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
3 Polymorphisms in the HPC/ELAC-2 and alpha 1-antitrypsin genes that correlate with human diseases in a North Indian population.Mol Biol Rep. 2011 Jun;38(5):3137-44. doi: 10.1007/s11033-010-9984-6. Epub 2010 Feb 2.
4 Implication of polycomb members Bmi-1, Mel-18, and Hpc-2 in the regulation of p16INK4a, p14ARF, h-TERT, and c-Myc expression in primary breast carcinomas.Clin Cancer Res. 2006 Dec 1;12(23):6929-36. doi: 10.1158/1078-0432.CCR-06-0788.
5 HIV-positive women: reasons they are tested for HIV and their clinical characteristics on entry into the health care system. J Gen Intern Med. 1991 Jul-Aug;6(4):286-9. doi: 10.1007/BF02597422.
6 Germline genetic profiling in prostate cancer: latest developments and potential clinical applications.Future Sci OA. 2015 Dec 18;2(1):FSO87. doi: 10.4155/fso.15.87. eCollection 2016 Mar.
7 HPC2/ELAC2 gene variants associated with incident prostate cancer.J Hum Genet. 2003;48(12):634-638. doi: 10.1007/s10038-003-0091-6. Epub 2003 Nov 19.
8 A homozygous splicing mutation in ELAC2 suggests phenotypic variability including intellectual disability with minimal cardiac involvement.Orphanet J Rare Dis. 2016 Oct 21;11(1):139. doi: 10.1186/s13023-016-0526-8.
9 Association of hereditary prostate cancer gene polymorphic variants with sporadic aggressive prostate carcinoma.Prostate. 2006 Jan 1;66(1):49-56. doi: 10.1002/pros.20320.
10 Lung Cancer-Targeting Peptides with Multi-subtype Indication for Combinational Drug Delivery and Molecular Imaging.Theranostics. 2017 Apr 10;7(6):1612-1632. doi: 10.7150/thno.17573. eCollection 2017.
11 ELAC2/HPC2 involvement in hereditary and sporadic prostate cancer.Cancer Res. 2001 Aug 15;61(16):6038-41.
12 Associations of polymorphisms in HPC2/ELAC2 and SRD5A2 genes with benign prostate hyperplasia in Turkish men.Asian Pac J Cancer Prev. 2011;12(3):731-3.
13 Nuclear ELAC2 overexpression is associated with increased hazard for relapse after radical prostatectomy.Oncotarget. 2019 Aug 13;10(48):4973-4986. doi: 10.18632/oncotarget.27132. eCollection 2019 Aug 13.
14 Concerted regulation of mitochondrial and nuclear non-coding RNAs by a dual-targeted RNase Z.EMBO Rep. 2018 Oct;19(10):e46198. doi: 10.15252/embr.201846198. Epub 2018 Aug 20.
15 Mutations in ELAC2 associated with hypertrophic cardiomyopathy impair mitochondrial tRNA 3'-end processing.Hum Mutat. 2019 Oct;40(10):1731-1748. doi: 10.1002/humu.23777. Epub 2019 Jun 18.
16 Sequence variants of elaC homolog 2 (Escherichia coli) (ELAC2) gene and susceptibility to prostate cancer in the Health Professionals Follow-Up Study.Carcinogenesis. 2008 May;29(5):999-1004. doi: 10.1093/carcin/bgn081. Epub 2008 Mar 28.
17 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
18 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
19 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
20 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
21 Bisphenol-A and estradiol exert novel gene regulation in human MCF-7 derived breast cancer cells. Mol Cell Endocrinol. 2004 Jun 30;221(1-2):47-55. doi: 10.1016/j.mce.2004.04.010.
22 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
23 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
24 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
25 Essential role of cell cycle regulatory genes p21 and p27 expression in inhibition of breast cancer cells by arsenic trioxide. Med Oncol. 2011 Dec;28(4):1225-54.
26 Proteomic analysis of the cellular response to a potent sensitiser unveils the dynamics of haptenation in living cells. Toxicology. 2020 Dec 1;445:152603. doi: 10.1016/j.tox.2020.152603. Epub 2020 Sep 28.
27 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
28 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
29 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
30 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
31 Analysis of the prostate cancer cell line LNCaP transcriptome using a sequencing-by-synthesis approach. BMC Genomics. 2006 Sep 29;7:246. doi: 10.1186/1471-2164-7-246.