General Information of Drug Off-Target (DOT) (ID: OTY8J0S4)

DOT Name Proton-coupled zinc antiporter SLC30A1 (SLC30A1)
Synonyms Solute carrier family 30 member 1; Zinc transporter 1
Gene Name SLC30A1
UniProt ID
ZNT1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF01545
Sequence
MGCWGRNRGRLLCMLALTFMFMVLEVVVSRVTSSLAMLSDSFHMLSDVLALVVALVAERF
ARRTHATQKNTFGWIRAEVMGALVNAIFLTGLCFAILLEAIERFIEPHEMQQPLVVLGVG
VAGLLVNVLGLCLFHHHSGFSQDSGHGHSHGGHGHGHGLPKGPRVKSTRPGSSDINVAPG
EQGPDQEETNTLVANTSNSNGLKLDPADPENPRSGDTVEVQVNGNLVREPDHMELEEDRA
GQLNMRGVFLHVLGDALGSVIVVVNALVFYFSWKGCSEGDFCVNPCFPDPCKAFVEIINS
THASVYEAGPCWVLYLDPTLCVVMVCILLYTTYPLLKESALILLQTVPKQIDIRNLIKEL
RNVEGVEEVHELHVWQLAGSRIIATAHIKCEDPTSYMEVAKTIKDVFHNHGIHATTIQPE
FASVGSKSSVVPCELACRTQCALKQCCGTLPQAPSGKDAEKTPAVSISCLELSNNLEKKP
RRTKAENIPAVVIEIKNMPNKQPESSL
Function
Zinc ion:proton antiporter that could function at the plasma membrane mediating zinc efflux from cells against its electrochemical gradient protecting them from intracellular zinc accumulation and toxicity. Alternatively, could prevent the transport to the plasma membrane of CACNB2, the L-type calcium channels regulatory subunit, through a yet to be defined mechanism. By modulating the expression of these channels at the plasma membrane, could prevent calcium and zinc influx into cells. By the same mechanism, could also prevent L-type calcium channels-mediated heavy metal influx into cells. In some cells, could also function as a zinc ion:proton antiporter mediating zinc entry into the lumen of cytoplasmic vesicles. In macrophages, can increase zinc ions concentration into the lumen of cytoplasmic vesicles containing engulfed bacteria and could help inactivate them.
KEGG Pathway
Mineral absorption (hsa04978 )
Reactome Pathway
Zinc efflux and compartmentalization by the SLC30 family (R-HSA-435368 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
40 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [1]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [2]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [3]
Doxorubicin DMVP5YE Approved Doxorubicin affects the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [5]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [6]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [7]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [8]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [9]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [10]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [11]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [12]
Decitabine DMQL8XJ Approved Decitabine affects the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [13]
Marinol DM70IK5 Approved Marinol decreases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [14]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [15]
Demecolcine DMCZQGK Approved Demecolcine increases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [16]
Cannabidiol DM0659E Approved Cannabidiol increases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [17]
Isotretinoin DM4QTBN Approved Isotretinoin decreases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [18]
Irinotecan DMP6SC2 Approved Irinotecan decreases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [19]
Ethinyl estradiol DMODJ40 Approved Ethinyl estradiol affects the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [20]
Zidovudine DM4KI7O Approved Zidovudine increases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [21]
Sulindac DM2QHZU Approved Sulindac increases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [22]
Acetic Acid, Glacial DM4SJ5Y Approved Acetic Acid, Glacial increases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [23]
Motexafin gadolinium DMEJKRF Approved Motexafin gadolinium increases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [24]
Epigallocatechin gallate DMCGWBJ Phase 3 Epigallocatechin gallate decreases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [25]
Curcumin DMQPH29 Phase 3 Curcumin increases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [26]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [27]
Amiodarone DMUTEX3 Phase 2/3 Trial Amiodarone increases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [28]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [29]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [30]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [31]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [33]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [34]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [16]
Coumestrol DM40TBU Investigative Coumestrol decreases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [35]
Deguelin DMXT7WG Investigative Deguelin increases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [36]
OXYQUINOLINE DMZVS9Y Investigative OXYQUINOLINE decreases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [9]
Forskolin DM6ITNG Investigative Forskolin increases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [37]
AM251 DMTAWHL Investigative AM251 increases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [38]
Genistein-7-glucoside DMMLNTW Investigative Genistein-7-glucoside increases the expression of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [39]
------------------------------------------------------------------------------------
⏷ Show the Full List of 40 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Proton-coupled zinc antiporter SLC30A1 (SLC30A1). [32]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Arsenic targets Pin1 and cooperates with retinoic acid to inhibit cancer-driving pathways and tumor-initiating cells. Nat Commun. 2018 Aug 9;9(1):3069. doi: 10.1038/s41467-018-05402-2.
3 Blood transcript immune signatures distinguish a subset of people with elevated serum ALT from others given acetaminophen. Clin Pharmacol Ther. 2016 Apr;99(4):432-41.
4 Identification of novel biomarkers for doxorubicin-induced toxicity in human cardiomyocytes derived from pluripotent stem cells. Toxicology. 2015 Feb 3;328:102-11. doi: 10.1016/j.tox.2014.12.018. Epub 2014 Dec 18.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 The thioxotriazole copper(II) complex A0 induces endoplasmic reticulum stress and paraptotic death in human cancer cells. J Biol Chem. 2009 Sep 4;284(36):24306-19.
7 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
8 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
9 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
10 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
11 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
12 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
13 Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS One. 2012;7(12):e53003. doi: 10.1371/journal.pone.0053003. Epub 2012 Dec 27.
14 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
15 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
16 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
17 Cannabidiol enhances cytotoxicity of anti-cancer drugs in human head and neck squamous cell carcinoma. Sci Rep. 2020 Nov 26;10(1):20622. doi: 10.1038/s41598-020-77674-y.
18 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
19 Clinical determinants of response to irinotecan-based therapy derived from cell line models. Clin Cancer Res. 2008 Oct 15;14(20):6647-55.
20 The genomic response of Ishikawa cells to bisphenol A exposure is dose- and time-dependent. Toxicology. 2010 Apr 11;270(2-3):137-49. doi: 10.1016/j.tox.2010.02.008. Epub 2010 Feb 17.
21 Differential gene expression in human hepatocyte cell lines exposed to the antiretroviral agent zidovudine. Arch Toxicol. 2014 Mar;88(3):609-23. doi: 10.1007/s00204-013-1169-3. Epub 2013 Nov 30.
22 Expression profile analysis of colon cancer cells in response to sulindac or aspirin. Biochem Biophys Res Commun. 2002 Mar 29;292(2):498-512.
23 Motexafin gadolinium and zinc induce oxidative stress responses and apoptosis in B-cell lymphoma lines. Cancer Res. 2005 Dec 15;65(24):11676-88.
24 Motexafin gadolinium disrupts zinc metabolism in human cancer cell lines. Cancer Res. 2005 May 1;65(9):3837-45.
25 Dietary catechins and procyanidins modulate zinc homeostasis in human HepG2 cells. J Nutr Biochem. 2011 Feb;22(2):153-63.
26 Curcumin downregulates the inflammatory cytokines CXCL1 and -2 in breast cancer cells via NFkappaB. Carcinogenesis. 2008 Apr;29(4):779-89.
27 The molecular basis of genistein-induced mitotic arrest and exit of self-renewal in embryonal carcinoma and primary cancer cell lines. BMC Med Genomics. 2008 Oct 10;1:49.
28 Identification by automated screening of a small molecule that selectively eliminates neural stem cells derived from hESCs but not dopamine neurons. PLoS One. 2009 Sep 23;4(9):e7155.
29 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
30 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
31 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
32 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
33 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
34 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
35 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
36 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
37 Induction of zinc transporters by forskolin in human trophoblast BeWo cells. Reprod Toxicol. 2006 Apr;21(3):285-91. doi: 10.1016/j.reprotox.2005.02.006. Epub 2005 Apr 18.
38 Cannabinoid derivatives induce cell death in pancreatic MIA PaCa-2 cells via a receptor-independent mechanism. FEBS Lett. 2006 Mar 20;580(7):1733-9.
39 Water-soluble genistin glycoside isoflavones up-regulate antioxidant metallothionein expression and scavenge free radicals. J Agric Food Chem. 2006 May 31;54(11):3819-26.