General Information of Drug Off-Target (DOT) (ID: OTYHIYN2)

DOT Name Golgi SNAP receptor complex member 2 (GOSR2)
Synonyms 27 kDa Golgi SNARE protein; Membrin
Gene Name GOSR2
Related Disease
Arteriosclerosis ( )
Atherosclerosis ( )
Atrial fibrillation ( )
Branchiootic syndrome ( )
Bronchiolitis obliterans syndrome ( )
Cardiovascular disease ( )
Cerebellar ataxia ( )
Essential hypertension ( )
Isolated cleft lip ( )
Movement disorder ( )
Myocardial infarction ( )
Progressive myoclonic epilepsy type 6 ( )
Trichohepatoenteric syndrome ( )
Unverricht-Lundborg syndrome ( )
Congenital muscular dystrophy ( )
Coronary heart disease ( )
Familial atrial fibrillation ( )
Muscular dystrophy ( )
High blood pressure ( )
Muscular dystrophy, congenital, with or without seizures ( )
Progressive myoclonus epilepsy ( )
UniProt ID
GOSR2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3EG9
Pfam ID
PF12352
Sequence
MDPLFQQTHKQVHEIQSCMGRLETADKQSVHIVENEIQASIDQIFSRLERLEILSSKEPP
NKRQNARLRVDQLKYDVQHLQTALRNFQHRRHAREQQERQREELLSRTFTTNDSDTTIPM
DESLQFNSSLQKVHNGMDDLILDGHNILDGLRTQRLTLKGTQKKILDIANMLGLSNTVMR
LIEKRAFQDKYFMIGGMLLTCVVMFLVVQYLT
Function Involved in transport of proteins from the cis/medial-Golgi to the trans-Golgi network.
KEGG Pathway
S.RE interactions in vesicular transport (hsa04130 )
Reactome Pathway
XBP1(S) activates chaperone genes (R-HSA-381038 )
Cargo concentration in the ER (R-HSA-5694530 )
COPI-mediated anterograde transport (R-HSA-6807878 )
Intra-Golgi traffic (R-HSA-6811438 )
COPII-mediated vesicle transport (R-HSA-204005 )

Molecular Interaction Atlas (MIA) of This DOT

21 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Arteriosclerosis DISK5QGC Strong Genetic Variation [1]
Atherosclerosis DISMN9J3 Strong Genetic Variation [1]
Atrial fibrillation DIS15W6U Strong Genetic Variation [2]
Branchiootic syndrome DIS3X164 Strong Biomarker [3]
Bronchiolitis obliterans syndrome DISCK9IV Strong Genetic Variation [4]
Cardiovascular disease DIS2IQDX Strong Genetic Variation [5]
Cerebellar ataxia DIS9IRAV Strong Genetic Variation [6]
Essential hypertension DIS7WI98 Strong Biomarker [7]
Isolated cleft lip DIS2O2JV Strong Genetic Variation [8]
Movement disorder DISOJJ2D Strong Genetic Variation [9]
Myocardial infarction DIS655KI Strong Genetic Variation [10]
Progressive myoclonic epilepsy type 6 DIS06G6V Strong Autosomal recessive [11]
Trichohepatoenteric syndrome DISL3ODF Strong Genetic Variation [12]
Unverricht-Lundborg syndrome DISG4WLX Strong Biomarker [6]
Congenital muscular dystrophy DISKY7OY moderate Genetic Variation [13]
Coronary heart disease DIS5OIP1 moderate Genetic Variation [14]
Familial atrial fibrillation DISL4AGF moderate Biomarker [2]
Muscular dystrophy DISJD6P7 moderate Genetic Variation [13]
High blood pressure DISY2OHH Limited Biomarker [7]
Muscular dystrophy, congenital, with or without seizures DISBTHTO Limited Unknown [15]
Progressive myoclonus epilepsy DISAMCNS Limited Genetic Variation [6]
------------------------------------------------------------------------------------
⏷ Show the Full List of 21 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Golgi SNAP receptor complex member 2 (GOSR2). [16]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Golgi SNAP receptor complex member 2 (GOSR2). [17]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Golgi SNAP receptor complex member 2 (GOSR2). [18]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Golgi SNAP receptor complex member 2 (GOSR2). [19]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Golgi SNAP receptor complex member 2 (GOSR2). [20]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Golgi SNAP receptor complex member 2 (GOSR2). [21]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Golgi SNAP receptor complex member 2 (GOSR2). [22]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Golgi SNAP receptor complex member 2 (GOSR2). [23]
Niclosamide DMJAGXQ Approved Niclosamide decreases the expression of Golgi SNAP receptor complex member 2 (GOSR2). [24]
Bortezomib DMNO38U Approved Bortezomib increases the expression of Golgi SNAP receptor complex member 2 (GOSR2). [25]
Hydroquinone DM6AVR4 Approved Hydroquinone decreases the expression of Golgi SNAP receptor complex member 2 (GOSR2). [26]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Golgi SNAP receptor complex member 2 (GOSR2). [27]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Golgi SNAP receptor complex member 2 (GOSR2). [28]
CHLORANIL DMCHGF1 Investigative CHLORANIL increases the expression of Golgi SNAP receptor complex member 2 (GOSR2). [29]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)

References

1 GOSR2 Lys67Arg is associated with hypertension in whites.Am J Hypertens. 2009 Feb;22(2):163-8. doi: 10.1038/ajh.2008.336. Epub 2008 Dec 4.
2 Multi-ethnic genome-wide association study for atrial fibrillation.Nat Genet. 2018 Jun 11;50(9):1225-1233. doi: 10.1038/s41588-018-0133-9.
3 EYA1-related disorders: two clinical cases and a literature review.Int J Pediatr Otorhinolaryngol. 2014 Aug;78(8):1201-10. doi: 10.1016/j.ijporl.2014.03.032. Epub 2014 Apr 12.
4 (1)H NMR To Evaluate the Metabolome of Bronchoalveolar Lavage Fluid (BALf) in Bronchiolitis Obliterans Syndrome (BOS): Toward the Development of a New Approach for Biomarker Identification.J Proteome Res. 2017 Apr 7;16(4):1669-1682. doi: 10.1021/acs.jproteome.6b01038. Epub 2017 Mar 14.
5 Leveraging Polygenic Functional Enrichment to Improve GWAS Power.Am J Hum Genet. 2019 Jan 3;104(1):65-75. doi: 10.1016/j.ajhg.2018.11.008. Epub 2018 Dec 27.
6 Mechanisms of Neurological Dysfunction in GOSR2 Progressive Myoclonus Epilepsy, a Golgi SNAREopathy.Neuroscience. 2019 Nov 10;420:41-49. doi: 10.1016/j.neuroscience.2019.03.057. Epub 2019 Apr 4.
7 A haplotype of the GOSR2 gene is associated with essential hypertension in Japanese men.Clin Biochem. 2013 Jun;46(9):760-5. doi: 10.1016/j.clinbiochem.2012.12.021. Epub 2013 Jan 11.
8 Genome-wide analyses of non-syndromic cleft lip with palate identify 14 novel loci and genetic heterogeneity.Nat Commun. 2017 Feb 24;8:14364. doi: 10.1038/ncomms14364.
9 Ramsay Hunt syndrome: clinical characterization of progressive myoclonus ataxia caused by GOSR2 mutation.Mov Disord. 2014 Jan;29(1):139-43. doi: 10.1002/mds.25704. Epub 2013 Oct 30.
10 A haplotype of the GOSR2 gene is associated with myocardial infarction in Japanese men.Genet Test Mol Biomarkers. 2013 Jun;17(6):481-8. doi: 10.1089/gtmb.2012.0379. Epub 2013 May 15.
11 A mutation in the Golgi Qb-SNARE gene GOSR2 causes progressive myoclonus epilepsy with early ataxia. Am J Hum Genet. 2011 May 13;88(5):657-63. doi: 10.1016/j.ajhg.2011.04.011. Epub 2011 May 5.
12 'North Sea' progressive myoclonus epilepsy: phenotype of subjects with GOSR2 mutation.Brain. 2013 Apr;136(Pt 4):1146-54. doi: 10.1093/brain/awt021. Epub 2013 Feb 28.
13 TRAPPC11 and GOSR2 mutations associate with hypoglycosylation of -dystroglycan and muscular dystrophy.Skelet Muscle. 2018 May 31;8(1):17. doi: 10.1186/s13395-018-0163-0.
14 Identification of 64 Novel Genetic Loci Provides an Expanded View on the Genetic Architecture of Coronary Artery Disease.Circ Res. 2018 Feb 2;122(3):433-443. doi: 10.1161/CIRCRESAHA.117.312086. Epub 2017 Dec 6.
15 Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA. 2014 Nov 12;312(18):1880-7. doi: 10.1001/jama.2014.14604.
16 Design principles of concentration-dependent transcriptome deviations in drug-exposed differentiating stem cells. Chem Res Toxicol. 2014 Mar 17;27(3):408-20.
17 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
18 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
19 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
20 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
21 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
22 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
23 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
24 Mitochondrial Uncoupling Induces Epigenome Remodeling and Promotes Differentiation in Neuroblastoma. Cancer Res. 2023 Jan 18;83(2):181-194. doi: 10.1158/0008-5472.CAN-22-1029.
25 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
26 Keratinocyte-derived IL-36gama plays a role in hydroquinone-induced chemical leukoderma through inhibition of melanogenesis in human epidermal melanocytes. Arch Toxicol. 2019 Aug;93(8):2307-2320.
27 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
28 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
29 Redox-active quinones induces genome-wide DNA methylation changes by an iron-mediated and Tet-dependent mechanism. Nucleic Acids Res. 2014 Feb;42(3):1593-605. doi: 10.1093/nar/gkt1090. Epub 2013 Nov 8.