General Information of Drug Combination (ID: DCXHG7P)

Drug Combination Name
Pravastatin CATECHIN
Indication
Disease Entry Status REF
Dyslipidemias Phase 1 [1]
Component Drugs Pravastatin   DM6A0X7 CATECHIN   DMY38SB
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Pravastatin
Disease Entry ICD 11 Status REF
Adult acute monocytic leukemia N.A. Approved [2]
Arteriosclerosis BD40 Approved [2]
Hypercholesterolaemia 5C80.0 Approved [3]
Hyperlipidemia, familial combined, LPL related N.A. Approved [2]
Hypertriglyceridemia 5C80.1 Approved [2]
Stroke 8B20 Investigative [2]
Pravastatin Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
HMG-CoA reductase (HMGCR) TTPADOQ HMDH_HUMAN Inhibitor [5]
------------------------------------------------------------------------------------
Pravastatin Interacts with 11 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
Multidrug resistance-associated protein 2 (ABCC2) DTFI42L MRP2_HUMAN Substrate [6]
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [7]
Breast cancer resistance protein (ABCG2) DTI7UX6 ABCG2_HUMAN Substrate [8]
Organic anion transporting polypeptide 1B1 (SLCO1B1) DT3D8F0 SO1B1_HUMAN Substrate [9]
Bile salt export pump (ABCB11) DTJ0EW4 ABCBB_HUMAN Substrate [10]
Organic anion transporter 3 (SLC22A8) DTVP67E S22A8_HUMAN Substrate [11]
Organic anion transporter 4 (SLC22A11) DT06JWZ S22AB_HUMAN Substrate [12]
Organic anion transporting polypeptide 1B3 (SLCO1B3) DT9C1TS SO1B3_HUMAN Substrate [13]
Organic anion transporting polypeptide 2B1 (SLCO2B1) DTPFTEQ SO2B1_HUMAN Substrate [14]
Probable small intestine urate exporter (SLC17A4) DTHE530 S17A4_HUMAN Substrate [15]
Organic anion transporter 7 (SLC22A9) DTDI5S3 S22A9_HUMAN Substrate [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 DTP(s)
Pravastatin Interacts with 3 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [17]
Cytochrome P450 3A5 (CYP3A5) DEIBDNY CP3A5_HUMAN Metabolism [18]
Cytochrome P450 2C9 (CYP2C9) DE5IED8 CP2C9_HUMAN Metabolism [19]
------------------------------------------------------------------------------------
Pravastatin Interacts with 5 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Stromelysin-1 (MMP3) OTGBI74Z MMP3_HUMAN Increases ADR [20]
Liver carboxylesterase 1 (CES1) OT9L0LR8 EST1_HUMAN Increases ADR [20]
Kinesin-like protein KIF6 (KIF6) OTDH3MR4 KIF6_HUMAN Increases ADR [21]
Apolipoprotein E (APOE) OTFOWL2H APOE_HUMAN Increases ADR [20]
3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) OTRT3F3U HMDH_HUMAN Increases ADR [22]
------------------------------------------------------------------------------------
Indication(s) of CATECHIN
Disease Entry ICD 11 Status REF
Discovery agent N.A. Investigative [4]
CATECHIN Interacts with 9 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Carbonic anhydrase VI (CA-VI) TTCFSPE CAH6_HUMAN Inhibitor [4]
Carbonic anhydrase I (CA-I) TTHQPL7 CAH1_HUMAN Inhibitor [4]
Carbonic anhydrase XII (CA-XII) TTSYM0R CAH12_HUMAN Inhibitor [4]
Carbonic anhydrase II (CA-II) TTANPDJ CAH2_HUMAN Inhibitor [4]
Carbonic anhydrase XIV (CA-XIV) TTEYTKG CAH14_HUMAN Inhibitor [4]
Carbonic anhydrase (CA) TTUNARX NOUNIPROTAC Inhibitor [4]
Carbonic anhydrase IV (CA-IV) TTZHA0O CAH4_HUMAN Inhibitor [4]
Prostaglandin G/H synthase 1 (COX-1) TT8NGED PGH1_HUMAN Inhibitor [25]
Carbonic anhydrase IX (CA-IX) TT2LVK8 CAH9_HUMAN Inhibitor [4]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 DTT(s)
CATECHIN Interacts with 75 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Prostaglandin G/H synthase 2 (PTGS2) OT75U9M4 PGH2_HUMAN Decreases Expression [26]
Interleukin-2 receptor subunit alpha (IL2RA) OT0MWCHG IL2RA_HUMAN Decreases Expression [23]
Ferritin heavy chain (FTH1) OT6IFS0O FRIH_HUMAN Increases Expression [23]
Thymidine kinase, cytosolic (TK1) OTY5JFM1 KITH_HUMAN Decreases Expression [23]
Intercellular adhesion molecule 1 (ICAM1) OTTOIX77 ICAM1_HUMAN Increases Expression [23]
Nucleophosmin (NPM1) OTTBYYT0 NPM_HUMAN Decreases Expression [23]
Annexin A2 (ANXA2) OTFNS0CC ANXA2_HUMAN Increases Expression [23]
Tyrosine-protein kinase Lyn (LYN) OTP686K2 LYN_HUMAN Decreases Expression [23]
60 kDa heat shock protein, mitochondrial (HSPD1) OTTO1Y11 CH60_HUMAN Decreases Expression [23]
DNA topoisomerase 1 (TOP1) OT51O0CF TOP1_HUMAN Decreases Expression [23]
DNA topoisomerase 2-alpha (TOP2A) OT6LPS08 TOP2A_HUMAN Decreases Expression [23]
Macrophage migration inhibitory factor (MIF) OTUCMVCX MIF_HUMAN Decreases Expression [23]
B-lymphocyte antigen CD19 (CD19) OTCPF9NF CD19_HUMAN Increases Expression [23]
Cyclic AMP-dependent transcription factor ATF-4 (ATF4) OTRFV19J ATF4_HUMAN Increases Expression [23]
Integrin alpha-L (ITGAL) OTCUQAIS ITAL_HUMAN Increases Expression [23]
CD9 antigen (CD9) OT2184XU CD9_HUMAN Increases Expression [23]
Interleukin-10 (IL10) OTIRFRXC IL10_HUMAN Increases Expression [23]
Interleukin-32 (IL32) OT3FHZ81 IL32_HUMAN Decreases Expression [23]
Progranulin (GRN) OTXXSJ53 GRN_HUMAN Increases Expression [23]
Tumor necrosis factor receptor superfamily member 8 (TNFRSF8) OTJ8UM8O TNR8_HUMAN Decreases Expression [23]
Homeobox protein Hox-D3 (HOXD3) OTBUZ35T HXD3_HUMAN Increases Expression [23]
Protein DEK (DEK) OTYCJ5H6 DEK_HUMAN Decreases Expression [23]
Transcription factor 7 (TCF7) OT1ID822 TCF7_HUMAN Increases Expression [23]
Signal transducer and activator of transcription 1-alpha/beta (STAT1) OTLMBUZ6 STAT1_HUMAN Decreases Expression [23]
Signal transducer and activator of transcription 6 (STAT6) OTCKMP49 STAT6_HUMAN Increases Expression [23]
Neurogenic locus notch homolog protein 1 (NOTCH1) OTI1WADQ NOTC1_HUMAN Increases Expression [23]
Lys-63-specific deubiquitinase BRCC36 (BRCC3) OTK0ZN7Y BRCC3_HUMAN Decreases Expression [23]
Protein PRRC2A (PRRC2A) OTBX6FM5 PRC2A_HUMAN Increases Expression [23]
Fms-related tyrosine kinase 3 ligand (FLT3LG) OTU0YGC4 FLT3L_HUMAN Decreases Expression [23]
Host cell factor 1 (HCFC1) OT0UCK62 HCFC1_HUMAN Increases Expression [23]
Signal transducer and activator of transcription 5B (STAT5B) OTZVPEBT STA5B_HUMAN Increases Expression [23]
CCAAT/enhancer-binding protein gamma (CEBPG) OTGNAX3H CEBPG_HUMAN Increases Expression [23]
CD81 antigen (CD81) OTQFXNAZ CD81_HUMAN Increases Expression [23]
Protein BTG1 (BTG1) OTVJ2CDM BTG1_HUMAN Increases Expression [23]
Ras-related C3 botulinum toxin substrate 1 (RAC1) OTKRO61U RAC1_HUMAN Decreases Expression [23]
Rho GTPase-activating protein 4 (ARHGAP4) OTXV053R RHG04_HUMAN Decreases Expression [23]
RNA-binding protein EWS (EWSR1) OT7SRHV3 EWS_HUMAN Increases Expression [23]
Dual specificity mitogen-activated protein kinase kinase 1 (MAP2K1) OT4Y9NQI MP2K1_HUMAN Decreases Expression [23]
Large ribosomal subunit protein eL6 (RPL6) OTRU71O4 RL6_HUMAN Increases Expression [23]
Interferon regulatory factor 4 (IRF4) OT1DHQ1P IRF4_HUMAN Decreases Expression [23]
Splicing factor 1 (SF1) OTLEDM2S SF01_HUMAN Decreases Expression [23]
Sodium-dependent phosphate transporter 1 (SLC20A1) OTC3D894 S20A1_HUMAN Increases Expression [23]
Polyribonucleotide 5'-hydroxyl-kinase Clp1 (CLP1) OTPY965Y CLP1_HUMAN Decreases Expression [23]
Catalase (CAT) OTHEBX9R CATA_HUMAN Increases Activity [27]
Superoxide dismutase , mitochondrial (SOD2) OTIWXGZ9 SODM_HUMAN Increases Activity [27]
Nuclear receptor subfamily 1 group I member 2 (NR1I2) OTC5U0N5 NR1I2_HUMAN Increases Expression [28]
Urokinase-type plasminogen activator (PLAU) OTX0QGKK UROK_HUMAN Increases Expression [29]
Tissue-type plasminogen activator (PLAT) OTQPDNAB TPA_HUMAN Increases Expression [29]
Protein c-Fos (FOS) OTJBUVWS FOS_HUMAN Decreases Expression [30]
Cellular tumor antigen p53 (TP53) OTIE1VH3 P53_HUMAN Increases Expression [30]
Plasminogen activator inhibitor 1 (SERPINE1) OTT0MPQ3 PAI1_HUMAN Decreases Expression [31]
Transcription factor Jun (JUN) OTCYBO6X JUN_HUMAN Decreases Expression [30]
Transcription factor Sp1 (SP1) OTISPT4X SP1_HUMAN Increases Expression [32]
Heme oxygenase 1 (HMOX1) OTC1W6UX HMOX1_HUMAN Increases Expression [33]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Decreases Expression [30]
Retinoic acid receptor beta (RARB) OT367U3E RARB_HUMAN Decreases Metabolism [34]
Neutrophil cytosol factor 1 (NCF1) OTMHT3G6 NCF1_HUMAN Decreases Expression [35]
G1/S-specific cyclin-D1 (CCND1) OT8HPTKJ CCND1_HUMAN Decreases Expression [36]
Tumor necrosis factor receptor superfamily member 6 (FAS) OTP9XG86 TNR6_HUMAN Increases Expression [37]
DNA cytosine-5)-methyltransferase 1 (DNMT1) OTM2DGTK DNMT1_HUMAN Decreases Activity [34]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Decreases Phosphorylation [36]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Decreases Phosphorylation [36]
RAC-alpha serine/threonine-protein kinase (AKT1) OT8H2YY7 AKT1_HUMAN Decreases Phosphorylation [36]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Expression [30]
Caspase-7 (CASP7) OTAPJ040 CASP7_HUMAN Increases Expression [30]
Caspase-9 (CASP9) OTD4RFFG CASP9_HUMAN Increases Expression [30]
Cytochrome c (CYCS) OTBFALJD CYC_HUMAN Affects Localization [37]
E3 ubiquitin-protein ligase Mdm2 (MDM2) OTOVXARF MDM2_HUMAN Decreases Expression [30]
Transcription factor p65 (RELA) OTUJP9CN TF65_HUMAN Decreases Expression [30]
Focal adhesion kinase 1 (PTK2) OT3Q1JDY FAK1_HUMAN Increases Phosphorylation [38]
Apoptosis regulator BAX (BAX) OTAW0V4V BAX_HUMAN Increases Expression [30]
Caspase-8 (CASP8) OTA8TVI8 CASP8_HUMAN Increases Activity [37]
Nuclear factor erythroid 2-related factor 2 (NFE2L2) OT0HENJ5 NF2L2_HUMAN Increases Expression [33]
Broad substrate specificity ATP-binding cassette transporter ABCG2 (ABCG2) OTW8V2V1 ABCG2_HUMAN Decreases Expression [39]
Sulfotransferase 1A1 (SULT1A1) OT0K7JIE ST1A1_HUMAN Increases Sulfation [40]
------------------------------------------------------------------------------------
⏷ Show the Full List of 75 DOT(s)

References

1 ClinicalTrials.gov (NCT02431013) Cilostazol-Simvastatin Drug Interaction Study
2 Pravastatin FDA Label
3 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 2953).
4 Carbonic anhydrase inhibitors. Antioxidant polyphenols effectively inhibit mammalian isoforms I-XV. Bioorg Med Chem Lett. 2010 Sep 1;20(17):5050-3.
5 A randomized, double-blind trial comparing the efficacy and safety of pitavastatin versus pravastatin in patients with primary hypercholesterolemia. Atherosclerosis. 2002 Jun;162(2):373-9.
6 Role of transporters in the tissue-selective distribution and elimination of drugs: transporters in the liver, small intestine, brain and kidney. J Control Release. 2002 Jan 17;78(1-3):43-54.
7 Tarascon Pocket Pharmacopoeia 2018 Classic Shirt-Pocket Edition.
8 Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Lett. 2016 Jan 1;370(1):153-64.
9 The effect of SLCO1B1*15 on the disposition of pravastatin and pitavastatin is substrate dependent: the contribution of transporting activity changes by SLCO1B1*15. Pharmacogenet Genomics. 2008 May;18(5):424-33.
10 Bile salt export pump (BSEP/ABCB11) can transport a nonbile acid substrate, pravastatin. J Pharmacol Exp Ther. 2005 Aug;314(2):876-82.
11 Prediction of the overall renal tubular secretion and hepatic clearance of anionic drugs and a renal drug-drug interaction involving organic anion transporter 3 in humans by in vitro uptake experiments. Drug Metab Dispos. 2011 Jun;39(6):1031-8.
12 Inhibition of human organic anion transporter 3 mediated pravastatin transport by gemfibrozil and the metabolites in humans. Xenobiotica. 2007 Apr;37(4):416-26.
13 Relevance of conserved lysine and arginine residues in transmembrane helices for the transport activity of organic anion transporting polypeptide 1B3. Br J Pharmacol. 2010 Feb 1;159(3):698-708.
14 Functional characterization of pH-sensitive organic anion transporting polypeptide OATP-B in human. J Pharmacol Exp Ther. 2004 Feb;308(2):438-45.
15 A Na+-phosphate cotransporter homologue (SLC17A4 protein) is an intestinal organic anion exporter. Am J Physiol Cell Physiol. 2012 Jun 1;302(11):C1652-60.
16 Variability in hepatic expression of organic anion transporter 7/SLC22A9, a novel pravastatin uptake transporter: impact of genetic and regulatory factors. Pharmacogenomics J. 2016 Aug;16(4):341-51.
17 Clinical pharmacokinetics of pravastatin: mechanisms of pharmacokinetic events. Clin Pharmacokinet. 2000 Dec;39(6):397-412.
18 Comparison of cytochrome P-450-dependent metabolism and drug interactions of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors lovastatin and pravastatin in the liver. Drug Metab Dispos. 1999 Feb;27(2):173-9.
19 In vitro comparative inhibition profiles of major human drug metabolising cytochrome P450 isozymes (CYP2C9, CYP2D6 and CYP3A4) by HMG-CoA reductase inhibitors. Eur J Clin Pharmacol. 1996;50(3):209-15.
20 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.
21 Association of the Trp719Arg polymorphism in kinesin-like protein 6 with myocardial infarction and coronary heart disease in 2 prospective trials: the CARE and WOSCOPS trials. J Am Coll Cardiol. 2008 Jan 29;51(4):435-43. doi: 10.1016/j.jacc.2007.05.057.
22 Pharmacogenetic study of statin therapy and cholesterol reduction. JAMA. 2004 Jun 16;291(23):2821-7. doi: 10.1001/jama.291.23.2821.
23 Epicatechin and a cocoa polyphenolic extract modulate gene expression in human Caco-2 cells. J Nutr. 2004 Oct;134(10):2509-16.
24 Phloretin exhibits potential food-drug interactions by inhibiting human UDP-glucuronosyltransferases in vitro. Toxicol In Vitro. 2022 Oct;84:105447. doi: 10.1016/j.tiv.2022.105447. Epub 2022 Jul 19.
25 Mechanism-based inactivation of COX-1 by red wine m-hydroquinones: a structure-activity relationship study. J Nat Prod. 2004 Nov;67(11):1777-82.
26 Suppression by flavonoids of cyclooxygenase-2 promoter-dependent transcriptional activity in colon cancer cells: structure-activity relationship. Jpn J Cancer Res. 2000 Jul;91(7):686-91.
27 Green tea catechins alone or in combination alter functional parameters of human neutrophils via suppressing the activation of TLR-4/NFB p65 signal pathway. Toxicol In Vitro. 2015 Oct;29(7):1766-78.
28 Stable cellular models of nuclear receptor PXR for high-throughput evaluation of small molecules. Toxicol In Vitro. 2018 Oct;52:222-234.
29 Polyphyenolics increase t-PA and u-PA gene transcription in cultured human endothelial cells. Alcohol Clin Exp Res. 2001 Feb;25(2):155-62.
30 Cytotoxicity and apoptosis induction in human breast adenocarcinoma MCF-7 cells by (+)-cyanidan-3-ol. Exp Toxicol Pathol. 2013 Nov;65(7-8):1091-100. doi: 10.1016/j.etp.2013.04.005. Epub 2013 May 21.
31 Polyphenols downregulate PAI-1 gene expression in cultured human coronary artery endothelial cells: molecular contributor to cardiovascular protection. Thromb Res. 2007;121(1):59-65. doi: 10.1016/j.thromres.2007.02.001. Epub 2007 Mar 26.
32 (-)-Epicatechin rescues the As(2) O(3) -induced HERG K(+) channel deficiency possibly through upregulating transcription factor SP1 expression. J Biochem Mol Toxicol. 2017 Nov;31(11). doi: 10.1002/jbt.21966. Epub 2017 Aug 2.
33 Flavonoids protect human retinal pigment epithelial cells from oxidative-stress-induced death. Invest Ophthalmol Vis Sci. 2006 Jul;47(7):3164-77. doi: 10.1167/iovs.04-1369.
34 Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol. 2005 Oct;68(4):1018-30. doi: 10.1124/mol.104.008367. Epub 2005 Jul 21.
35 Effects of red grape juice polyphenols in NADPH oxidase subunit expression in human neutrophils and mononuclear blood cells. Br J Nutr. 2009 Oct;102(8):1125-35. doi: 10.1017/S0007114509382148. Epub 2009 May 19.
36 The reaction of flavanols with nitrous acid protects against N-nitrosamine formation and leads to the formation of nitroso derivatives which inhibit cancer cell growth. Free Radic Biol Med. 2006 Jan 15;40(2):323-34. doi: 10.1016/j.freeradbiomed.2005.08.031. Epub 2005 Oct 11.
37 Role of fatty acid chain length on the induction of apoptosis by newly synthesized catechin derivatives. Chem Biol Interact. 2010 May 14;185(3):182-8. doi: 10.1016/j.cbi.2010.02.045. Epub 2010 Mar 4.
38 Monomeric and oligomeric flavanols are agonists of membrane androgen receptors. Exp Cell Res. 2005 Oct 1;309(2):329-39. doi: 10.1016/j.yexcr.2005.06.011.
39 Phytochemicals induce breast cancer resistance protein in Caco-2 cells and enhance the transport of benzo[a]pyrene-3-sulfate. Toxicol Sci. 2007 Apr;96(2):227-36. doi: 10.1093/toxsci/kfl147. Epub 2006 Oct 31.
40 Variable sulfation of dietary polyphenols by recombinant human sulfotransferase (SULT) 1A1 genetic variants and SULT1E1. Drug Metab Dispos. 2007 May;35(5):740-6. doi: 10.1124/dmd.106.013987. Epub 2007 Feb 9.