General Information of Drug Off-Target (DOT) (ID: OTGY8ESX)

DOT Name Protein canopy homolog 2 (CNPY2)
Synonyms MIR-interacting saposin-like protein; Putative secreted protein Zsig9; Transmembrane protein 4
Gene Name CNPY2
Related Disease
Adenocarcinoma ( )
Cardiac failure ( )
Colorectal carcinoma ( )
Congestive heart failure ( )
Esophageal squamous cell carcinoma ( )
Familial adenomatous polyposis 2 ( )
Gastric cancer ( )
Gastric neoplasm ( )
Hereditary diffuse gastric adenocarcinoma ( )
Myocardial infarction ( )
Neoplasm ( )
Non-small-cell lung cancer ( )
Pancreatitis ( )
Prostate cancer ( )
Prostate carcinoma ( )
Squamous cell carcinoma ( )
Clear cell renal carcinoma ( )
Renal cell carcinoma ( )
Colorectal neoplasm ( )
Hepatocellular carcinoma ( )
UniProt ID
CNPY2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF11938
Sequence
MKGWGWLALLLGALLGTAWARRSQDLHCGACRALVDELEWEIAQVDPKKTIQMGSFRINP
DGSQSVVEVPYARSEAHLTELLEEICDRMKEYGEQIDPSTHRKNYVRVVGRNGESSELDL
QGIRIDSDISGTLKFACESIVEEYEDELIEFFSREADNVKDKLCSKRTDLCDHALHISHD
EL
Function Positive regulator of neurite outgrowth by stabilizing myosin regulatory light chain (MRLC). It prevents MIR-mediated MRLC ubiquitination and its subsequent proteasomal degradation.
Tissue Specificity Expressed in different tissues. Highest levels are detected in adult placenta, liver and pancreas.

Molecular Interaction Atlas (MIA) of This DOT

20 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Adenocarcinoma DIS3IHTY Strong Biomarker [1]
Cardiac failure DISDC067 Strong Altered Expression [2]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [3]
Congestive heart failure DIS32MEA Strong Altered Expression [2]
Esophageal squamous cell carcinoma DIS5N2GV Strong Genetic Variation [4]
Familial adenomatous polyposis 2 DIS62W3Y Strong Genetic Variation [5]
Gastric cancer DISXGOUK Strong Biomarker [6]
Gastric neoplasm DISOKN4Y Strong Biomarker [6]
Hereditary diffuse gastric adenocarcinoma DISUIBYS Strong Biomarker [6]
Myocardial infarction DIS655KI Strong Altered Expression [2]
Neoplasm DISZKGEW Strong Altered Expression [7]
Non-small-cell lung cancer DIS5Y6R9 Strong Biomarker [1]
Pancreatitis DIS0IJEF Strong Biomarker [8]
Prostate cancer DISF190Y Strong Biomarker [9]
Prostate carcinoma DISMJPLE Strong Biomarker [9]
Squamous cell carcinoma DISQVIFL Strong Biomarker [1]
Clear cell renal carcinoma DISBXRFJ moderate Altered Expression [10]
Renal cell carcinoma DISQZ2X8 moderate Altered Expression [10]
Colorectal neoplasm DISR1UCN Limited Altered Expression [11]
Hepatocellular carcinoma DIS0J828 Limited Altered Expression [7]
------------------------------------------------------------------------------------
⏷ Show the Full List of 20 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
18 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Protein canopy homolog 2 (CNPY2). [12]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Protein canopy homolog 2 (CNPY2). [13]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Protein canopy homolog 2 (CNPY2). [14]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Protein canopy homolog 2 (CNPY2). [15]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Protein canopy homolog 2 (CNPY2). [16]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Protein canopy homolog 2 (CNPY2). [17]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Protein canopy homolog 2 (CNPY2). [18]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Protein canopy homolog 2 (CNPY2). [19]
Selenium DM25CGV Approved Selenium decreases the expression of Protein canopy homolog 2 (CNPY2). [20]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Protein canopy homolog 2 (CNPY2). [21]
Acocantherin DM7JT24 Approved Acocantherin affects the expression of Protein canopy homolog 2 (CNPY2). [22]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Protein canopy homolog 2 (CNPY2). [23]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Protein canopy homolog 2 (CNPY2). [24]
Tocopherol DMBIJZ6 Phase 2 Tocopherol decreases the expression of Protein canopy homolog 2 (CNPY2). [20]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Protein canopy homolog 2 (CNPY2). [25]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Protein canopy homolog 2 (CNPY2). [26]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Protein canopy homolog 2 (CNPY2). [27]
Butanoic acid DMTAJP7 Investigative Butanoic acid decreases the expression of Protein canopy homolog 2 (CNPY2). [28]
------------------------------------------------------------------------------------
⏷ Show the Full List of 18 Drug(s)

References

1 The CNPY2 enhances epithelial-mesenchymal transition via activating the AKT/GSK3 pathway in non-small cell lung cancer.Cell Biol Int. 2018 Aug;42(8):959-964. doi: 10.1002/cbin.10961. Epub 2018 Apr 17.
2 Knockout of Canopy 2 activates p16(INK4a) pathway to impair cardiac repair.J Mol Cell Cardiol. 2019 Jul;132:36-48. doi: 10.1016/j.yjmcc.2019.04.018. Epub 2019 Apr 29.
3 Serum CNPY2 isoform 2 represents a novel biomarker for early detection of colorectal cancer.Aging (Albany NY). 2018 Aug 2;10(8):1921-1931. doi: 10.18632/aging.101512.
4 A decision tree-based combination of ezrin-interacting proteins to estimate the prognostic risk of patients with esophageal squamous cell carcinoma.Hum Pathol. 2017 Aug;66:115-125. doi: 10.1016/j.humpath.2017.06.003. Epub 2017 Jun 9.
5 Soluble urokinase plasminogen activator receptor associates with higher risk, advanced disease severity as well as inflammation, and might serve as a prognostic biomarker of severe acute pancreatitis.J Clin Lab Anal. 2020 Mar;34(3):e23097. doi: 10.1002/jcla.23097. Epub 2019 Nov 27.
6 A gene expression signature of acquired chemoresistance to cisplatin and fluorouracil combination chemotherapy in gastric cancer patients.PLoS One. 2011 Feb 18;6(2):e16694. doi: 10.1371/journal.pone.0016694.
7 Canopy Homolog 2 Expression Predicts Poor Prognosis in Hepatocellular Carcinoma with Tumor Hemorrhage.Cell Physiol Biochem. 2018;50(6):2017-2028. doi: 10.1159/000495048. Epub 2018 Nov 9.
8 From moderately severe to severe hypertriglyceridemia induced acute pancreatitis: circulating miRNAs play role as potential biomarkers.PLoS One. 2014 Nov 3;9(11):e111058. doi: 10.1371/journal.pone.0111058. eCollection 2014.
9 CNPY2 inhibits MYLIP-mediated AR protein degradation in prostate cancer cells.Oncotarget. 2018 Apr 3;9(25):17645-17655. doi: 10.18632/oncotarget.24824. eCollection 2018 Apr 3.
10 CNPY2 promoted the proliferation of renal cell carcinoma cells and increased the expression of TP53.Biochem Biophys Res Commun. 2017 Apr 1;485(2):267-271. doi: 10.1016/j.bbrc.2017.02.095. Epub 2017 Feb 21.
11 Decreasing CNPY2 Expression Diminishes Colorectal Tumor Growth and Development through Activation of p53 Pathway.Am J Pathol. 2016 Apr;186(4):1015-24. doi: 10.1016/j.ajpath.2015.11.012. Epub 2016 Feb 3.
12 Stem cell transcriptome responses and corresponding biomarkers that indicate the transition from adaptive responses to cytotoxicity. Chem Res Toxicol. 2017 Apr 17;30(4):905-922.
13 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
14 Pharmacogenomic analysis of acute promyelocytic leukemia cells highlights CYP26 cytochrome metabolism in differential all-trans retinoic acid sensitivity. Blood. 2007 May 15;109(10):4450-60.
15 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
16 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
17 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
18 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
19 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
20 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
21 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
22 Proteomics analysis of the proliferative effect of low-dose ouabain on human endothelial cells. Biol Pharm Bull. 2007 Feb;30(2):247-53. doi: 10.1248/bpb.30.247.
23 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
24 Quantitative proteomics and transcriptomics addressing the estrogen receptor subtype-mediated effects in T47D breast cancer cells exposed to the phytoestrogen genistein. Mol Cell Proteomics. 2011 Jan;10(1):M110.002170.
25 Synergistic activity of BET protein antagonist-based combinations in mantle cell lymphoma cells sensitive or resistant to ibrutinib. Blood. 2015 Sep 24;126(13):1565-74.
26 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
27 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
28 MS4A3-HSP27 target pathway reveals potential for haematopoietic disorder treatment in alimentary toxic aleukia. Cell Biol Toxicol. 2023 Feb;39(1):201-216. doi: 10.1007/s10565-021-09639-4. Epub 2021 Sep 28.