General Information of Drug Off-Target (DOT) (ID: OTJGC23Y)

DOT Name Osteopontin (SPP1)
Synonyms Bone sialoprotein 1; Nephropontin; Secreted phosphoprotein 1; SPP-1; Urinary stone protein; Uropontin
Gene Name SPP1
UniProt ID
OSTP_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3CXD; 3DSF
Pfam ID
PF00865
Sequence
MRIAVICFCLLGITCAIPVKQADSGSSEEKQLYNKYPDAVATWLNPDPSQKQNLLAPQNA
VSSEETNDFKQETLPSKSNESHDHMDDMDDEDDDDHVDSQDSIDSNDSDDVDDTDDSHQS
DESHHSDESDELVTDFPTDLPATEVFTPVVPTVDTYDGRGDSVVYGLRSKSKKFRRPDIQ
YPDATDEDITSHMESEELNGAYKAIPVAQDLNAPSDWDSRGKDSYETSQLDDQSAETHSH
KQSRLYKRKANDESNEHSDVIDSQELSKVSREFHSHEFHSHEDMLVVDPKSKEEDKHLKF
RISHELDSASSEVN
Function
Major non-collagenous bone protein that binds tightly to hydroxyapatite. Appears to form an integral part of the mineralized matrix. Probably important to cell-matrix interaction; Acts as a cytokine involved in enhancing production of interferon-gamma and interleukin-12 and reducing production of interleukin-10 and is essential in the pathway that leads to type I immunity.
Tissue Specificity Detected in cerebrospinal fluid and urine (at protein level) . Bone. Found in plasma.
KEGG Pathway
PI3K-Akt sig.ling pathway (hsa04151 )
Apelin sig.ling pathway (hsa04371 )
Focal adhesion (hsa04510 )
ECM-receptor interaction (hsa04512 )
Toll-like receptor sig.ling pathway (hsa04620 )
GnRH secretion (hsa04929 )
Human papillomavirus infection (hsa05165 )
Reactome Pathway
Signaling by PDGF (R-HSA-186797 )
Integrin cell surface interactions (R-HSA-216083 )
Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-like Growth Factor Binding Proteins (IGFBPs) (R-HSA-381426 )
RUNX3 Regulates Immune Response and Cell Migration (R-HSA-8949275 )
Post-translational protein phosphorylation (R-HSA-8957275 )
Degradation of the extracellular matrix (R-HSA-1474228 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 4 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Etoposide DMNH3PG Approved Osteopontin (SPP1) affects the response to substance of Etoposide. [57]
Topotecan DMP6G8T Approved Osteopontin (SPP1) affects the response to substance of Topotecan. [57]
Cyclophosphamide DM4O2Z7 Approved Osteopontin (SPP1) affects the response to substance of Cyclophosphamide. [57]
(S)-Norfluoxetine DM8ZTPF Investigative Osteopontin (SPP1) increases the Fracture ADR of (S)-Norfluoxetine. [58]
------------------------------------------------------------------------------------
63 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Osteopontin (SPP1). [1]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Osteopontin (SPP1). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Osteopontin (SPP1). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Osteopontin (SPP1). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Osteopontin (SPP1). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Osteopontin (SPP1). [6]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Osteopontin (SPP1). [7]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Osteopontin (SPP1). [8]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Osteopontin (SPP1). [9]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Osteopontin (SPP1). [10]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Osteopontin (SPP1). [11]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Osteopontin (SPP1). [12]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide increases the expression of Osteopontin (SPP1). [13]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Osteopontin (SPP1). [14]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Osteopontin (SPP1). [15]
Triclosan DMZUR4N Approved Triclosan affects the expression of Osteopontin (SPP1). [16]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Osteopontin (SPP1). [17]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Osteopontin (SPP1). [18]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Osteopontin (SPP1). [15]
Fulvestrant DM0YZC6 Approved Fulvestrant increases the expression of Osteopontin (SPP1). [8]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Osteopontin (SPP1). [19]
Cannabidiol DM0659E Approved Cannabidiol increases the expression of Osteopontin (SPP1). [20]
Isotretinoin DM4QTBN Approved Isotretinoin increases the expression of Osteopontin (SPP1). [21]
Bortezomib DMNO38U Approved Bortezomib decreases the expression of Osteopontin (SPP1). [12]
Troglitazone DM3VFPD Approved Troglitazone decreases the expression of Osteopontin (SPP1). [22]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol decreases the expression of Osteopontin (SPP1). [23]
Ethanol DMDRQZU Approved Ethanol decreases the expression of Osteopontin (SPP1). [24]
Nicotine DMWX5CO Approved Nicotine increases the expression of Osteopontin (SPP1). [25]
Piroxicam DMTK234 Approved Piroxicam decreases the expression of Osteopontin (SPP1). [26]
Clozapine DMFC71L Approved Clozapine decreases the expression of Osteopontin (SPP1). [27]
Ethinyl estradiol DMODJ40 Approved Ethinyl estradiol affects the expression of Osteopontin (SPP1). [28]
Simvastatin DM30SGU Approved Simvastatin decreases the expression of Osteopontin (SPP1). [29]
Gemcitabine DMSE3I7 Approved Gemcitabine increases the expression of Osteopontin (SPP1). [30]
Alitretinoin DMME8LH Approved Alitretinoin decreases the expression of Osteopontin (SPP1). [31]
Bezafibrate DMZDCS0 Approved Bezafibrate decreases the expression of Osteopontin (SPP1). [32]
Isoniazid DM5JVS3 Approved Isoniazid decreases the expression of Osteopontin (SPP1). [33]
Magnesium DMU4ORS Approved Magnesium increases the expression of Osteopontin (SPP1). [34]
Falecalcitrol DMBI9ZJ Approved Falecalcitrol increases the expression of Osteopontin (SPP1). [14]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Osteopontin (SPP1). [35]
Berberine DMC5Q8X Phase 4 Berberine increases the expression of Osteopontin (SPP1). [36]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Osteopontin (SPP1). [15]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the expression of Osteopontin (SPP1). [37]
Tamibarotene DM3G74J Phase 3 Tamibarotene increases the expression of Osteopontin (SPP1). [3]
Seocalcitol DMKL9QO Phase 3 Seocalcitol increases the expression of Osteopontin (SPP1). [38]
Coprexa DMA0WEK Phase 3 Coprexa decreases the expression of Osteopontin (SPP1). [39]
phorbol 12-myristate 13-acetate DMJWD62 Phase 2 phorbol 12-myristate 13-acetate increases the expression of Osteopontin (SPP1). [22]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Osteopontin (SPP1). [40]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Osteopontin (SPP1). [41]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Osteopontin (SPP1). [44]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Osteopontin (SPP1). [45]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde increases the expression of Osteopontin (SPP1). [46]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A increases the expression of Osteopontin (SPP1). [33]
Paraquat DMR8O3X Investigative Paraquat increases the expression of Osteopontin (SPP1). [16]
Nickel chloride DMI12Y8 Investigative Nickel chloride increases the expression of Osteopontin (SPP1). [47]
D-glucose DMMG2TO Investigative D-glucose decreases the expression of Osteopontin (SPP1). [48]
KOJIC ACID DMP84CS Investigative KOJIC ACID increases the expression of Osteopontin (SPP1). [49]
U0126 DM31OGF Investigative U0126 decreases the expression of Osteopontin (SPP1). [50]
Lead acetate DML0GZ2 Investigative Lead acetate increases the expression of Osteopontin (SPP1). [51]
Naringin DM4DG1Y Investigative Naringin increases the expression of Osteopontin (SPP1). [52]
Oxalic Acid DMLN2GQ Investigative Oxalic Acid increases the expression of Osteopontin (SPP1). [53]
3-aminobenzamide DM7P3IZ Investigative 3-aminobenzamide increases the expression of Osteopontin (SPP1). [54]
Alpha-ketoglutaric acid DM5LFYN Investigative Alpha-ketoglutaric acid increases the expression of Osteopontin (SPP1). [55]
ODQ DMSAJO8 Investigative ODQ decreases the expression of Osteopontin (SPP1). [56]
------------------------------------------------------------------------------------
⏷ Show the Full List of 63 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Osteopontin (SPP1). [42]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Osteopontin (SPP1). [43]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Differential modulation of PI3-kinase/Akt pathway during all-trans retinoic acid- and Am80-induced HL-60 cell differentiation revealed by DNA microarray analysis. Biochem Pharmacol. 2004 Dec 1;68(11):2177-86.
4 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Toxicogenomics-based discrimination of toxic mechanism in HepG2 human hepatoma cells. Toxicol Sci. 2000 Dec;58(2):399-415.
8 Arsenite and cadmium promote the development of mammary tumors. Carcinogenesis. 2020 Jul 14;41(7):1005-1014. doi: 10.1093/carcin/bgz176.
9 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
10 Multifaceted preventive effects of single agent quercetin on a human prostate adenocarcinoma cell line (PC-3): implications for nutritional transcriptomics and multi-target therapy. Med Oncol. 2011 Dec;28(4):1395-404. doi: 10.1007/s12032-010-9603-3. Epub 2010 Jul 2.
11 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
12 Synergistic antiproliferative effect of arsenic trioxide combined with bortezomib in HL60 cell line and primary blasts from patients affected by myeloproliferative disorders. Cancer Genet Cytogenet. 2010 Jun;199(2):110-20. doi: 10.1016/j.cancergencyto.2010.02.010.
13 Chronic senescent human mesenchymal stem cells as possible contributor to the wound healing disorder after exposure to the alkylating agent sulfur mustard. Arch Toxicol. 2021 Feb;95(2):727-747. doi: 10.1007/s00204-020-02946-5. Epub 2021 Jan 25.
14 A highly potent 26,27-Hexafluoro-1a,25-dihydroxyvitamin D3 on calcification in SV40-transformed human fetal osteoblastic cells. Calcif Tissue Int. 2002 Jun;70(6):488-95.
15 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
16 Primary Human Hepatocyte Spheroids as Tools to Study the Hepatotoxic Potential of Non-Pharmaceutical Chemicals. Int J Mol Sci. 2021 Oct 12;22(20):11005. doi: 10.3390/ijms222011005.
17 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
18 Dose- and time-dependent effects of phenobarbital on gene expression profiling in human hepatoma HepaRG cells. Toxicol Appl Pharmacol. 2009 Feb 1;234(3):345-60.
19 Dexamethasone and the inflammatory response in explants of human omental adipose tissue. Mol Cell Endocrinol. 2010 Feb 5;315(1-2):292-8.
20 Investigation of in vitro odonto/osteogenic capacity of cannabidiol on human dental pulp cell. J Dent. 2021 Jun;109:103673. doi: 10.1016/j.jdent.2021.103673. Epub 2021 Apr 16.
21 Gene microarray analysis of human renal cell carcinoma: the effects of HDAC inhibition and retinoid treatment. Cancer Biol Ther. 2008 Oct;7(10):1607-18.
22 Troglitazone, a PPARgamma ligand, inhibits osteopontin gene expression in human monocytes/macrophage THP-1 cells. J Atheroscler Thromb. 2000;7(2):77-82. doi: 10.5551/jat1994.7.77.
23 Identification of biomarkers and outcomes of endocrine disruption in human ovarian cortex using In Vitro Models. Toxicology. 2023 Feb;485:153425. doi: 10.1016/j.tox.2023.153425. Epub 2023 Jan 5.
24 Cardiac toxicity from ethanol exposure in human-induced pluripotent stem cell-derived cardiomyocytes. Toxicol Sci. 2019 May 1;169(1):280-292.
25 Nicotinic regulation of c-fos and osteopontin expression in human-derived osteoblast-like cells and human trabecular bone organ culture. Bone. 2001 Jun;28(6):603-8. doi: 10.1016/s8756-3282(01)00427-6.
26 Apoptosis induced by piroxicam plus cisplatin combined treatment is triggered by p21 in mesothelioma. PLoS One. 2011;6(8):e23569.
27 Histamine H4 receptor agonists have more activities than H4 agonism in antigen-specific human T-cell responses. Immunology. 2007 Jun;121(2):266-75. doi: 10.1111/j.1365-2567.2007.02574.x. Epub 2007 Mar 7.
28 The genomic response of Ishikawa cells to bisphenol A exposure is dose- and time-dependent. Toxicology. 2010 Apr 11;270(2-3):137-49. doi: 10.1016/j.tox.2010.02.008. Epub 2010 Feb 17.
29 Statin-mediated reduction of osteopontin expression induces apoptosis and cell growth arrest in ovarian clear cell carcinoma. Oncol Rep. 2011 Jan;25(1):41-7.
30 Gene expression profiling of breast cancer cells in response to gemcitabine: NF-kappaB pathway activation as a potential mechanism of resistance. Breast Cancer Res Treat. 2007 Apr;102(2):157-72.
31 Human renal mesangial cells are a target for the anti-inflammatory action of 9-cis retinoic acid. Br J Pharmacol. 2000 Dec;131(8):1673-83. doi: 10.1038/sj.bjp.0703728.
32 PPARalpha agonists suppress osteopontin expression in macrophages and decrease plasma levels in patients with type 2 diabetes. Diabetes. 2007 Jun;56(6):1662-70. doi: 10.2337/db06-1177. Epub 2007 Mar 14.
33 Comparison of base-line and chemical-induced transcriptomic responses in HepaRG and RPTEC/TERT1 cells using TempO-Seq. Arch Toxicol. 2018 Aug;92(8):2517-2531.
34 Effect of surface chemical modification of bioceramic on phenotype of human bone-derived cells. J Biomed Mater Res. 1999 Mar 15;44(4):389-96. doi: 10.1002/(sici)1097-4636(19990315)44:4<389::aid-jbm4>3.0.co;2-o.
35 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
36 Berberine promotes bone marrow-derived mesenchymal stem cells osteogenic differentiation via canonical Wnt/-catenin signaling pathway. Toxicol Lett. 2016 Jan 5;240(1):68-80. doi: 10.1016/j.toxlet.2015.10.007. Epub 2015 Oct 22.
37 Resveratrol inhibits myeloma cell growth, prevents osteoclast formation, and promotes osteoblast differentiation. Cancer Res. 2005 Nov 1;65(21):9943-52. doi: 10.1158/0008-5472.CAN-05-0651.
38 Expression profiling in squamous carcinoma cells reveals pleiotropic effects of vitamin D3 analog EB1089 signaling on cell proliferation, differentiation, and immune system regulation. Mol Endocrinol. 2002 Jun;16(6):1243-56.
39 Copper deprivation enhances the chemosensitivity of pancreatic cancer to rapamycin by mTORC1/2 inhibition. Chem Biol Interact. 2023 Sep 1;382:110546. doi: 10.1016/j.cbi.2023.110546. Epub 2023 Jun 7.
40 Modulation of gene expression and DNA adduct formation in HepG2 cells by polycyclic aromatic hydrocarbons with different carcinogenic potencies. Carcinogenesis. 2006 Mar;27(3):646-55.
41 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
42 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
43 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
44 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
45 Sulforaphane-induced apoptosis in human leukemia HL-60 cells through extrinsic and intrinsic signal pathways and altering associated genes expression assayed by cDNA microarray. Environ Toxicol. 2017 Jan;32(1):311-328.
46 Potential relationship between hepatobiliary osteopontin and peroxisome proliferator-activated receptor alpha expression following ethanol-associated hepatic injury in vivo and in vitro. Toxicol Sci. 2008 Nov;106(1):290-9. doi: 10.1093/toxsci/kfn165. Epub 2008 Aug 14.
47 Classification of heavy-metal toxicity by human DNA microarray analysis. Environ Sci Technol. 2007 May 15;41(10):3769-74.
48 Phytic acid improves osteogenesis and inhibits the senescence of human bone marrow mesenchymal stem cells under high-glucose conditions via the ERK pathway. Chem Biol Interact. 2024 Jan 5;387:110818. doi: 10.1016/j.cbi.2023.110818. Epub 2023 Nov 22.
49 Toxicogenomics of kojic acid on gene expression profiling of a375 human malignant melanoma cells. Biol Pharm Bull. 2006 Apr;29(4):655-69.
50 Protein Kinase D2 and D3 Promote Prostate Cancer Cell Bone Metastasis by Positively Regulating Runx2 in a MEK/ERK1/2-Dependent Manner. Am J Pathol. 2023 May;193(5):624-637. doi: 10.1016/j.ajpath.2023.01.004. Epub 2023 Feb 3.
51 In vitro effects of lead on gene expression in neural stem cells and associations between up-regulated genes and cognitive scores in children. Environ Health Perspect. 2017 Apr;125(4):721-729.
52 Naringin-induced bone morphogenetic protein-2 expression via PI3K, Akt, c-Fos/c-Jun and AP-1 pathway in osteoblasts. Eur J Pharmacol. 2008 Jul 7;588(2-3):333-41. doi: 10.1016/j.ejphar.2008.04.030. Epub 2008 May 19.
53 Anti-nephrolithic potential of resveratrol via inhibition of ROS, MCP-1, hyaluronan and osteopontin in vitro and in vivo. Pharmacol Rep. 2013;65(4):970-9.
54 Differentiative pathway activated by 3-aminobenzamide, an inhibitor of PARP, in human osteosarcoma MG-63 cells. FEBS Lett. 2005 Jan 31;579(3):615-20. doi: 10.1016/j.febslet.2004.12.028.
55 Alpha ketoglutarate exerts a pro-osteogenic effect in osteoblast cell lines through activation of JNK and mTOR/S6K1/S6 signaling pathways. Toxicol Appl Pharmacol. 2019 Jul 1;374:53-64.
56 The effect of acrylamide and nitric oxide donors on human mesenchymal progenitor cells. Toxicol In Vitro. 2012 Sep;26(6):897-906. doi: 10.1016/j.tiv.2012.04.016. Epub 2012 Apr 20.
57 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.
58 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.