General Information of Drug Off-Target (DOT) (ID: OTHTJO2I)

DOT Name Junctophilin-3 (JPH3)
Synonyms JP-3; Junctophilin type 3; Trinucleotide repeat-containing gene 22 protein
Gene Name JPH3
Related Disease
Cerebrovascular disease ( )
Huntington disease-like 2 ( )
Hypercholesterolemia, familial, 1 ( )
Hypobetalipoproteinemia ( )
Abetalipoproteinemia ( )
Cardiovascular disease ( )
Cholesterol-ester transfer protein deficiency ( )
Chorea-acanthocytosis ( )
Coronary atherosclerosis ( )
Coronary heart disease ( )
Dentatorubral-pallidoluysian atrophy ( )
Friedreich's ataxia ( )
High blood pressure ( )
Hyperlipidemia, familial combined, LPL related ( )
Movement disorder ( )
Myocardial infarction ( )
Myotonic dystrophy ( )
Neoplasm ( )
Neuroferritinopathy ( )
Obesity ( )
Spinocerebellar ataxia type 2 ( )
Type-1/2 diabetes ( )
Spinocerebellar ataxia type 17 ( )
Stroke ( )
Colorectal carcinoma ( )
Colorectal neoplasm ( )
Amyotrophic lateral sclerosis ( )
Arteriosclerosis ( )
Atherosclerosis ( )
Dementia ( )
Hyperlipidemia ( )
Neuromuscular disease ( )
Non-insulin dependent diabetes ( )
Primary biliary cholangitis ( )
Vitamin deficiency ( )
UniProt ID
JPH3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF02493
Sequence
MSSGGRFNFDDGGSYCGGWEDGKAHGHGVCTGPKGQGEYTGSWSHGFEVLGVYTWPSGNT
YQGTWAQGKRHGIGLESKGKWVYKGEWTHGFKGRYGVRECAGNGAKYEGTWSNGLQDGYG
TETYSDGGTYQGQWVGGMRQGYGVRQSVPYGMAAVIRSPLRTSINSLRSEHTNGTALHPD
ASPAVAGSPAVSRGGFVLVAHSDSEILKSKKKGLFRRSLLSGLKLRKSESKSSLASQRSK
QSSFRSEAGMSTVSSTASDIHSTISLGEAEAELAVIEDDIDATTTETYVGEWKNDKRSGF
GVSQRSDGLKYEGEWASNRRHGYGCMTFPDGTKEEGKYKQNILVGGKRKNLIPLRASKIR
EKVDRAVEAAERAATIAKQKAEIAASRTSHSRAKAEAALTAAQKAQEEARIARITAKEFS
PSFQHRENGLEYQRPKRQTSCDDIEVLSTGTPLQQESPELYRKGTTPSDLTPDDSPLQSF
PTSPAATPPPAPAARNKVAHFSRQVSVDEERGGDIQMLLEGRAGDCARSSWGEEQAGGSR
GVRSGALRGGLLVDDFRTRGSGRKQPGNPKPRERRTESPPVFTWTSHHRASNHSPGGSRL
LELQEEKLSNYRMEMKPLLRMETHPQKRRYSKGGACRGLGDDHRPEDRGFGVQRLRSKAQ
NKENFRPASSAEPAVQKLASLRLGGAEPRLLRWDLTFSPPQKSLPVALESDEENGDELKS
STGSAPILVVMVILLNIGVAILFINFFI
Function
Junctophilins contribute to the formation of junctional membrane complexes (JMCs) which link the plasma membrane with the endoplasmic or sarcoplasmic reticulum in excitable cells. Provides a structural foundation for functional cross-talk between the cell surface and intracellular calcium release channels. JPH3 is brain-specific and appears to have an active role in certain neurons involved in motor coordination and memory.
Tissue Specificity Specifically expressed in brain.

Molecular Interaction Atlas (MIA) of This DOT

35 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Cerebrovascular disease DISAB237 Definitive Biomarker [1]
Huntington disease-like 2 DISM3G09 Definitive Autosomal dominant [2]
Hypercholesterolemia, familial, 1 DISU411W Definitive Biomarker [3]
Hypobetalipoproteinemia DIS0TPI3 Definitive Biomarker [4]
Abetalipoproteinemia DISMSS7T Strong Biomarker [5]
Cardiovascular disease DIS2IQDX Strong Biomarker [6]
Cholesterol-ester transfer protein deficiency DISP9UAV Strong Biomarker [7]
Chorea-acanthocytosis DISW1V6N Strong Biomarker [4]
Coronary atherosclerosis DISKNDYU Strong Genetic Variation [8]
Coronary heart disease DIS5OIP1 Strong Genetic Variation [8]
Dentatorubral-pallidoluysian atrophy DISHWE0K Strong Biomarker [9]
Friedreich's ataxia DIS5DV35 Strong Genetic Variation [10]
High blood pressure DISY2OHH Strong Biomarker [11]
Hyperlipidemia, familial combined, LPL related DISL1CE3 Strong Genetic Variation [12]
Movement disorder DISOJJ2D Strong Biomarker [13]
Myocardial infarction DIS655KI Strong Genetic Variation [14]
Myotonic dystrophy DISNBEMX Strong Genetic Variation [15]
Neoplasm DISZKGEW Strong Altered Expression [16]
Neuroferritinopathy DIS0E4F3 Strong Altered Expression [17]
Obesity DIS47Y1K Strong Biomarker [18]
Spinocerebellar ataxia type 2 DISF7WDI Strong Genetic Variation [19]
Type-1/2 diabetes DISIUHAP Strong Biomarker [20]
Spinocerebellar ataxia type 17 DISJXO7P moderate Genetic Variation [21]
Stroke DISX6UHX moderate Genetic Variation [22]
Colorectal carcinoma DIS5PYL0 Disputed Biomarker [23]
Colorectal neoplasm DISR1UCN Disputed Biomarker [23]
Amyotrophic lateral sclerosis DISF7HVM Limited Genetic Variation [24]
Arteriosclerosis DISK5QGC Limited Biomarker [25]
Atherosclerosis DISMN9J3 Limited Biomarker [25]
Dementia DISXL1WY Limited Genetic Variation [26]
Hyperlipidemia DIS61J3S Limited Genetic Variation [27]
Neuromuscular disease DISQTIJZ Limited Biomarker [24]
Non-insulin dependent diabetes DISK1O5Z Limited Genetic Variation [20]
Primary biliary cholangitis DIS43E0O Limited Biomarker [25]
Vitamin deficiency DISD07I9 Limited Biomarker [28]
------------------------------------------------------------------------------------
⏷ Show the Full List of 35 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
6 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Junctophilin-3 (JPH3). [29]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the methylation of Junctophilin-3 (JPH3). [30]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Junctophilin-3 (JPH3). [34]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Junctophilin-3 (JPH3). [36]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Junctophilin-3 (JPH3). [37]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of Junctophilin-3 (JPH3). [39]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Drug(s)
5 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Junctophilin-3 (JPH3). [31]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Junctophilin-3 (JPH3). [32]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Junctophilin-3 (JPH3). [33]
Niclosamide DMJAGXQ Approved Niclosamide increases the expression of Junctophilin-3 (JPH3). [35]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Junctophilin-3 (JPH3). [38]
------------------------------------------------------------------------------------

References

1 Hepatic lipase: a marker for cardiovascular disease risk and response to therapy.Curr Opin Lipidol. 2003 Apr;14(2):179-89. doi: 10.1097/00041433-200304000-00010.
2 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
3 Atheroprotective reverse cholesterol transport pathway is defective in familial hypercholesterolemia.Arterioscler Thromb Vasc Biol. 2011 Jul;31(7):1675-81. doi: 10.1161/ATVBAHA.111.227181. Epub 2011 Apr 28.
4 Current state of knowledge in Chorea-Acanthocytosis as core Neuroacanthocytosis syndrome.Eur J Med Genet. 2018 Nov;61(11):699-705. doi: 10.1016/j.ejmg.2017.12.007. Epub 2017 Dec 16.
5 Familial hypobetalipoproteinemia--differences in lipoprotein structure and composition.Ann Nutr Metab. 1993;37(5):253-61. doi: 10.1159/000177775.
6 Impact of high-density lipoprotein 3 cholesterol subfraction on periprocedural myocardial injury in patients who underwent elective percutaneous coronary intervention.Lipids Health Dis. 2018 Feb 2;17(1):21. doi: 10.1186/s12944-018-0670-3.
7 Composition of HDL-2 and HDL-3 in familial hyperalphalipoproteinemia.Atherosclerosis. 1976 Oct;25(1):131-6. doi: 10.1016/0021-9150(76)90055-1.
8 Impaired HDL2-mediated cholesterol efflux is associated with metabolic syndrome in families with early onset coronary heart disease and low HDL-cholesterol level.PLoS One. 2017 Feb 16;12(2):e0171993. doi: 10.1371/journal.pone.0171993. eCollection 2017.
9 Huntington disease-like 2 (HDL2) in Venezuela: frequency and ethnic origin.J Hum Genet. 2013 Jan;58(1):3-6. doi: 10.1038/jhg.2012.111. Epub 2012 Sep 13.
10 Huntington's disease phenocopies are clinically and genetically heterogeneous.Mov Disord. 2008 Apr 15;23(5):716-20. doi: 10.1002/mds.21915.
11 Higher High Density Lipoprotein 2 (HDL2) to Total HDL Cholesterol Ratio Is Associated with a Lower Risk for Incident Hypertension.Diabetes Metab J. 2019 Feb;43(1):114-122. doi: 10.4093/dmj.2018.0053. Epub 2018 Sep 28.
12 An omega-3 polyunsaturated fatty acid concentrate increases plasma high-density lipoprotein 2 cholesterol and paraoxonase levels in patients with familial combined hyperlipidemia.Metabolism. 2004 Feb;53(2):153-8. doi: 10.1016/j.metabol.2003.09.007.
13 A South African mixed ancestry family with Huntington disease-like 2: clinical and genetic features.Mov Disord. 2007 Oct 31;22(14):2083-9. doi: 10.1002/mds.21672.
14 Association of a polymorphism of BTN2A1 with myocardial infarction in East Asian populations.Atherosclerosis. 2011 Mar;215(1):145-52. doi: 10.1016/j.atherosclerosis.2010.12.005. Epub 2010 Dec 15.
15 Huntington's disease--like 2 is associated with CUG repeat-containing RNA foci.Ann Neurol. 2007 Mar;61(3):272-82. doi: 10.1002/ana.21081.
16 Epigenomic and Functional Characterization of Junctophilin 3 (JPH3) as a Novel Tumor Suppressor Being Frequently Inactivated by Promoter CpG Methylation in Digestive Cancers.Theranostics. 2017 May 30;7(7):2150-2163. doi: 10.7150/thno.18185. eCollection 2017.
17 Huntington's disease and Huntington's disease-like syndromes: an overview.Curr Opin Neurol. 2013 Aug;26(4):420-7. doi: 10.1097/WCO.0b013e3283632d90.
18 Lack of sex differences in high density lipoproteins in Pima Indians. Studies of obesity, lipase activities, and steroid hormones.Arteriosclerosis. 1987 May-Jun;7(3):292-300. doi: 10.1161/01.atv.7.3.292.
19 Huntington disease and Huntington disease-like in a case series from Brazil.Clin Genet. 2014 Oct;86(4):373-7. doi: 10.1111/cge.12283. Epub 2013 Oct 17.
20 Different inverse association of large high-density lipoprotein subclasses with exacerbation of insulin resistance and incidence of type 2 diabetes: The Nagahama study.Diabetes Res Clin Pract. 2017 May;127:123-131. doi: 10.1016/j.diabres.2017.03.018. Epub 2017 Mar 21.
21 Searching for mutation in the JPH3, ATN1 and TBP genes in Polish patients suspected of Huntington's disease and without mutation in the IT15 gene.Neurol Neurochir Pol. 2008 May-Jun;42(3):203-9.
22 Identification of high risk relatives for coronary heart disease.J Am Coll Cardiol. 1988 Oct;12(4):1110-3. doi: 10.1016/0735-1097(88)90487-1.
23 Comparing the DNA hypermethylome with gene mutations in human colorectal cancer.PLoS Genet. 2007 Sep;3(9):1709-23. doi: 10.1371/journal.pgen.0030157. Epub 2007 Jul 31.
24 Evaluating noncoding nucleotide repeat expansions in amyotrophic lateral sclerosis.Neurobiol Aging. 2014 Apr;35(4):936.e1-4. doi: 10.1016/j.neurobiolaging.2013.09.024. Epub 2013 Oct 23.
25 Lipoprotein(a) concentration and phenotypes in primary biliary cirrhosis.Clin Chim Acta. 1996 Nov 29;255(2):165-71. doi: 10.1016/0009-8981(96)06404-2.
26 JPH3 repeat expansions cause a progressive akinetic-rigid syndrome with severe dementia and putaminal rim in a five-generation African-American family.Neurogenetics. 2012 May;13(2):133-40. doi: 10.1007/s10048-012-0318-9. Epub 2012 Mar 25.
27 The management of the family at high risk for coronary heart disease.Cardiol Clin. 1989 May;7(2):467-77.
28 Expanding the Spectrum of Genes Involved in Huntington Disease Using a Combined Clinical and Genetic Approach.JAMA Neurol. 2016 Sep 1;73(9):1105-14. doi: 10.1001/jamaneurol.2016.2215.
29 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
30 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
31 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
32 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
33 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
34 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
35 Mitochondrial Uncoupling Induces Epigenome Remodeling and Promotes Differentiation in Neuroblastoma. Cancer Res. 2023 Jan 18;83(2):181-194. doi: 10.1158/0008-5472.CAN-22-1029.
36 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
37 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
38 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
39 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.