General Information of Drug Off-Target (DOT) (ID: OT0LHOZB)

DOT Name 2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial (BCKDHA)
Synonyms EC 1.2.4.4; Branched-chain alpha-keto acid dehydrogenase E1 component alpha chain; BCKDE1A; BCKDH E1-alpha
Gene Name BCKDHA
Related Disease
Maple syrup urine disease ( )
Maple syrup urine disease type 1A ( )
Arthritis ( )
Bacillary dysentery ( )
Crohn disease ( )
Stroke ( )
Trichohepatoenteric syndrome ( )
Ulcerative colitis ( )
Fetal growth restriction ( )
Classic maple syrup urine disease ( )
Intermediate maple syrup urine disease ( )
Intermittent maple syrup urine disease ( )
Thiamine-responsive maple syrup urine disease ( )
UniProt ID
ODBA_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1DTW; 1OLS; 1OLU; 1OLX; 1U5B; 1V11; 1V16; 1V1M; 1V1R; 1WCI; 1X7W; 1X7X; 1X7Y; 1X7Z; 1X80; 2BEU; 2BEV; 2BEW; 2BFB; 2BFC; 2BFD; 2BFE; 2BFF; 2J9F
EC Number
1.2.4.4
Pfam ID
PF00676
Sequence
MAVAIAAARVWRLNRGLSQAALLLLRQPGARGLARSHPPRQQQQFSSLDDKPQFPGASAE
FIDKLEFIQPNVISGIPIYRVMDRQGQIINPSEDPHLPKEKVLKLYKSMTLLNTMDRILY
ESQRQGRISFYMTNYGEEGTHVGSAAALDNTDLVFGQYREAGVLMYRDYPLELFMAQCYG
NISDLGKGRQMPVHYGCKERHFVTISSPLATQIPQAVGAAYAAKRANANRVVICYFGEGA
ASEGDAHAGFNFAATLECPIIFFCRNNGYAISTPTSEQYRGDGIAARGPGYGIMSIRVDG
NDVFAVYNATKEARRRAVAENQPFLIEAMTYRIGHHSTSDDSSAYRSVDEVNYWDKQDHP
ISRLRHYLLSQGWWDEEQEKAWRKQSRRKVMEAFEQAERKPKPNPNLLFSDVYQEMPAQL
RKQQESLARHLQTYGEHYPLDHFDK
Function
Together with BCKDHB forms the heterotetrameric E1 subunit of the mitochondrial branched-chain alpha-ketoacid dehydrogenase (BCKD) complex. The BCKD complex catalyzes the multi-step oxidative decarboxylation of alpha-ketoacids derived from the branched-chain amino-acids valine, leucine and isoleucine producing CO2 and acyl-CoA which is subsequently utilized to produce energy. The E1 subunit catalyzes the first step with the decarboxylation of the alpha-ketoacid forming an enzyme-product intermediate. A reductive acylation mediated by the lipoylamide cofactor of E2 extracts the acyl group from the E1 active site for the next step of the reaction.
KEGG Pathway
Valine, leucine and isoleucine degradation (hsa00280 )
Propanoate metabolism (hsa00640 )
Lipoic acid metabolism (hsa00785 )
Metabolic pathways (hsa01100 )
2-Oxocarboxylic acid metabolism (hsa01210 )
Reactome Pathway
Branched-chain amino acid catabolism (R-HSA-70895 )
Glyoxylate metabolism and glycine degradation (R-HSA-389661 )
BioCyc Pathway
MetaCyc:MONOMER-12005

Molecular Interaction Atlas (MIA) of This DOT

13 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Maple syrup urine disease DIS61XRH Definitive Autosomal recessive [1]
Maple syrup urine disease type 1A DIS0P5DC Definitive Autosomal recessive [2]
Arthritis DIST1YEL Strong Biomarker [3]
Bacillary dysentery DISFZHKN Strong Genetic Variation [4]
Crohn disease DIS2C5Q8 Strong Biomarker [5]
Stroke DISX6UHX Strong Biomarker [6]
Trichohepatoenteric syndrome DISL3ODF Strong Biomarker [7]
Ulcerative colitis DIS8K27O Strong Biomarker [5]
Fetal growth restriction DIS5WEJ5 moderate Biomarker [8]
Classic maple syrup urine disease DIS848CW Supportive Autosomal recessive [9]
Intermediate maple syrup urine disease DIS5SRXS Supportive Autosomal recessive [9]
Intermittent maple syrup urine disease DISJEHB2 Supportive Autosomal recessive [9]
Thiamine-responsive maple syrup urine disease DISEL4MR Supportive Autosomal recessive [9]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Topotecan DMP6G8T Approved 2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial (BCKDHA) affects the response to substance of Topotecan. [20]
------------------------------------------------------------------------------------
10 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate affects the expression of 2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial (BCKDHA). [10]
Tretinoin DM49DUI Approved Tretinoin increases the expression of 2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial (BCKDHA). [11]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of 2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial (BCKDHA). [12]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of 2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial (BCKDHA). [13]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of 2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial (BCKDHA). [15]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of 2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial (BCKDHA). [10]
Fluorouracil DMUM7HZ Approved Fluorouracil affects the expression of 2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial (BCKDHA). [16]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of 2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial (BCKDHA). [17]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of 2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial (BCKDHA). [18]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of 2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial (BCKDHA). [19]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Quercetin DM3NC4M Approved Quercetin increases the phosphorylation of 2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial (BCKDHA). [14]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of 2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial (BCKDHA). [14]
------------------------------------------------------------------------------------

References

1 Molecular genetic basis of maple syrup urine disease in a family with two defective alleles for branched chain acyltransferase and localization of the gene to human chromosome 1. Am J Hum Genet. 1991 Feb;48(2):342-50.
2 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
3 Monosodium urate crystal interleukin-1 release is dependent on Toll-like receptor 4 and transient receptor potential V1 activation.Rheumatology (Oxford). 2020 Jan 1;59(1):233-242. doi: 10.1093/rheumatology/kez259.
4 Shigella hijacks the glomulin-cIAPs-inflammasome axis to promote inflammation.EMBO Rep. 2018 Jan;19(1):89-101. doi: 10.15252/embr.201643841. Epub 2017 Nov 30.
5 Activation of NLRP3 Inflammasome in Inflammatory Bowel Disease: Differences Between Crohn's Disease and Ulcerative Colitis.Dig Dis Sci. 2017 Sep;62(9):2348-2356. doi: 10.1007/s10620-017-4609-8. Epub 2017 May 18.
6 Telemedicine Can Replace the Neurologist on a Mobile Stroke Unit.Stroke. 2017 Feb;48(2):493-496. doi: 10.1161/STROKEAHA.116.015363. Epub 2017 Jan 12.
7 ABRO1 promotes NLRP3 inflammasome activation through regulation of NLRP3 deubiquitination.EMBO J. 2019 Mar 15;38(6):e100376. doi: 10.15252/embj.2018100376. Epub 2019 Feb 20.
8 Uric Acid Crystals Induce Placental Inflammation and Alter Trophoblast Function via an IL-1-Dependent Pathway: Implications for Fetal Growth Restriction.J Immunol. 2017 Jan 1;198(1):443-451. doi: 10.4049/jimmunol.1601179. Epub 2016 Nov 30.
9 Maple Syrup Urine Disease. 2006 Jan 30 [updated 2020 Apr 23]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews(?) [Internet]. Seattle (WA): University of Washington, Seattle; 1993C2024.
10 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
11 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
12 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
13 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
14 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
15 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
16 Multi-level gene expression profiles affected by thymidylate synthase and 5-fluorouracil in colon cancer. BMC Genomics. 2006 Apr 3;7:68. doi: 10.1186/1471-2164-7-68.
17 Quantitative proteomics and transcriptomics addressing the estrogen receptor subtype-mediated effects in T47D breast cancer cells exposed to the phytoestrogen genistein. Mol Cell Proteomics. 2011 Jan;10(1):M110.002170.
18 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
19 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
20 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.