General Information of Drug Off-Target (DOT) (ID: OT6A63TX)

DOT Name Sushi repeat-containing protein SRPX2 (SRPX2)
Synonyms Sushi-repeat protein upregulated in leukemia
Gene Name SRPX2
Related Disease
Matthew-Wood syndrome ( )
Pancreatic cancer ( )
Advanced cancer ( )
Brain disease ( )
Colon cancer ( )
Colon carcinoma ( )
Colorectal carcinoma ( )
Epilepsy ( )
Esophageal squamous cell carcinoma ( )
Gastric cancer ( )
Hepatocellular carcinoma ( )
Language disorder ( )
Prostate cancer ( )
Prostate carcinoma ( )
Stomach cancer ( )
Carcinoma ( )
Intellectual disability ( )
Pancreatic ductal carcinoma ( )
Rolandic epilepsy-speech dyspraxia syndrome ( )
Apraxia ( )
Cognitive impairment ( )
Neoplasm ( )
Rolandic epilepsy, intellectual disability, and speech dyspraxia, X-linked ( )
Bilateral perisylvian polymicrogyria ( )
Neurodevelopmental disorder ( )
Polymicrogyria, bilateral perisylvian, X-linked ( )
UniProt ID
SRPX2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF13778 ; PF02494 ; PF00084
Sequence
MASQLTQRGALFLLFFLTPAVTPTWYAGSGYYPDESYNEVYAEEVPQAPALDYRVPRWCY
TLNIQDGEATCYSPKGGNYHSSLGTRCELSCDRGFRLIGRRSVQCLPSRRWSGTAYCRQM
RCHALPFITSGTYTCTNGVLLDSRCDYSCSSGYHLEGDRSRICMEDGRWSGGEPVCVDID
PPKIRCPHSREKMAEPEKLTARVYWDPPLVKDSADGTITRVTLRGPEPGSHFPEGEHVIR
YTAYDRAYNRASCKFIVKVQVRRCPTLKPPQHGYLTCTSAGDNYGATCEYHCDGGYDRQG
TPSRVCQSSRQWSGSPPICAPMKINVNVNSAAGLLDQFYEKQRLLIISAPDPSNRYYKMQ
ISMLQQSTCGLDLRHVTIIELVGQPPQEVGRIREQQLSANIIEELRQFQRLTRSYFNMVL
IDKQGIDRDRYMEPVTPEEIFTFIDDYLLSNQELTQRREQRDICE
Function
Acts as a ligand for the urokinase plasminogen activator surface receptor. Plays a role in angiogenesis by inducing endothelial cell migration and the formation of vascular network (cords). Involved in cellular migration and adhesion. Increases the phosphorylation levels of FAK. Interacts with and increases the mitogenic activity of HGF. Promotes synapse formation. May have a role in the perisylvian region, critical for language and cognitive development.
Tissue Specificity
Expressed in neurons of the rolandic area of the brain (at protein level). Highly expressed in the brain, placenta, lung, trachea, uterus, adrenal gland, heart, ovary and placenta. Weakly expressed in the peripheral blood, brain and bone marrow. Expressed in numerous cancer cell lines and in gastrointestinal cancer cells. Higher levels found in colorectal cancers than in normal colonic mucosa.

Molecular Interaction Atlas (MIA) of This DOT

26 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Matthew-Wood syndrome DISA7HR7 Definitive Altered Expression [1]
Pancreatic cancer DISJC981 Definitive Biomarker [1]
Advanced cancer DISAT1Z9 Strong Biomarker [2]
Brain disease DIS6ZC3X Strong Genetic Variation [3]
Colon cancer DISVC52G Strong Biomarker [4]
Colon carcinoma DISJYKUO Strong Biomarker [4]
Colorectal carcinoma DIS5PYL0 Strong Altered Expression [5]
Epilepsy DISBB28L Strong Biomarker [6]
Esophageal squamous cell carcinoma DIS5N2GV Strong Biomarker [2]
Gastric cancer DISXGOUK Strong Altered Expression [7]
Hepatocellular carcinoma DIS0J828 Strong Altered Expression [8]
Language disorder DISTLKP7 Strong Biomarker [9]
Prostate cancer DISF190Y Strong Biomarker [10]
Prostate carcinoma DISMJPLE Strong Biomarker [10]
Stomach cancer DISKIJSX Strong Altered Expression [7]
Carcinoma DISH9F1N moderate Altered Expression [11]
Intellectual disability DISMBNXP moderate Genetic Variation [12]
Pancreatic ductal carcinoma DIS26F9Q moderate Biomarker [13]
Rolandic epilepsy-speech dyspraxia syndrome DISWM45T Supportive Autosomal dominant [12]
Apraxia DISULX63 Disputed Biomarker [12]
Cognitive impairment DISH2ERD Disputed Genetic Variation [14]
Neoplasm DISZKGEW Disputed Altered Expression [15]
Rolandic epilepsy, intellectual disability, and speech dyspraxia, X-linked DISXL3SJ Disputed X-linked [16]
Bilateral perisylvian polymicrogyria DISIF9XK Limited Genetic Variation [17]
Neurodevelopmental disorder DIS372XH Limited Biomarker [6]
Polymicrogyria, bilateral perisylvian, X-linked DISBKRJ6 Limited X-linked recessive [18]
------------------------------------------------------------------------------------
⏷ Show the Full List of 26 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
18 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Sushi repeat-containing protein SRPX2 (SRPX2). [19]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Sushi repeat-containing protein SRPX2 (SRPX2). [20]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Sushi repeat-containing protein SRPX2 (SRPX2). [21]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Sushi repeat-containing protein SRPX2 (SRPX2). [22]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Sushi repeat-containing protein SRPX2 (SRPX2). [23]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Sushi repeat-containing protein SRPX2 (SRPX2). [24]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Sushi repeat-containing protein SRPX2 (SRPX2). [25]
Quercetin DM3NC4M Approved Quercetin increases the expression of Sushi repeat-containing protein SRPX2 (SRPX2). [26]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Sushi repeat-containing protein SRPX2 (SRPX2). [27]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Sushi repeat-containing protein SRPX2 (SRPX2). [28]
Isotretinoin DM4QTBN Approved Isotretinoin decreases the expression of Sushi repeat-containing protein SRPX2 (SRPX2). [29]
Troglitazone DM3VFPD Approved Troglitazone increases the expression of Sushi repeat-containing protein SRPX2 (SRPX2). [30]
Nicotine DMWX5CO Approved Nicotine increases the expression of Sushi repeat-containing protein SRPX2 (SRPX2). [31]
Mifepristone DMGZQEF Approved Mifepristone increases the expression of Sushi repeat-containing protein SRPX2 (SRPX2). [32]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Sushi repeat-containing protein SRPX2 (SRPX2). [33]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Sushi repeat-containing protein SRPX2 (SRPX2). [34]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Sushi repeat-containing protein SRPX2 (SRPX2). [36]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Sushi repeat-containing protein SRPX2 (SRPX2). [37]
------------------------------------------------------------------------------------
⏷ Show the Full List of 18 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Sushi repeat-containing protein SRPX2 (SRPX2). [35]
------------------------------------------------------------------------------------

References

1 SRPX2 and RAB31 are effective prognostic biomarkers in pancreatic cancer.J Cancer. 2019 Jun 2;10(12):2670-2678. doi: 10.7150/jca.32072. eCollection 2019.
2 SRPX2 knockdown inhibits cell proliferation and metastasis and promotes chemosensitivity in esophageal squamous cell carcinoma.Biomed Pharmacother. 2019 Jan;109:671-678. doi: 10.1016/j.biopha.2018.10.042. Epub 2018 Nov 5.
3 Molecular evolution of the human SRPX2 gene that causes brain disorders of the Rolandic and Sylvian speech areas.BMC Genet. 2007 Oct 18;8:72. doi: 10.1186/1471-2156-8-72.
4 SRPX2 regulates colon cancer cell metabolism by miR-192/215 via PI3K-Akt.Am J Transl Res. 2018 Feb 15;10(2):483-490. eCollection 2018.
5 Increased Sushi repeat-containing protein X-linked 2 is associated with progression of colorectal cancer.Med Oncol. 2015 Apr;32(4):99. doi: 10.1007/s12032-015-0548-4. Epub 2015 Mar 4.
6 Exploring the association between SRPX2 variants and neurodevelopment: How causal is it?.Gene. 2019 Feb 15;685:50-54. doi: 10.1016/j.gene.2018.10.067. Epub 2018 Oct 25.
7 Impact of overexpression of Sushi repeat-containing protein X-linked 2 gene on outcomes of gastric cancer.J Surg Oncol. 2014 Jun;109(8):836-40. doi: 10.1002/jso.23602. Epub 2014 Apr 2.
8 SRPX2, an independent prognostic marker, promotes cell migration and invasion in hepatocellular carcinoma.Biomed Pharmacother. 2017 Sep;93:398-405. doi: 10.1016/j.biopha.2017.06.075. Epub 2017 Jun 24.
9 The human language-associated gene SRPX2 regulates synapse formation and vocalization in mice.Science. 2013 Nov 22;342(6161):987-91. doi: 10.1126/science.1245079. Epub 2013 Oct 31.
10 Knockdown of SRPX2 inhibits the proliferation, migration, and invasion of prostate cancer cells through the PI3K/Akt/mTOR signaling pathway.J Biochem Mol Toxicol. 2018 Dec 9:e22237. doi: 10.1002/jbt.22237. Online ahead of print.
11 O-glycans truncation modulates gastric cancer cell signaling and transcription leading to a more aggressive phenotype.EBioMedicine. 2019 Feb;40:349-362. doi: 10.1016/j.ebiom.2019.01.017. Epub 2019 Jan 17.
12 SRPX2 mutations in disorders of language cortex and cognition. Hum Mol Genet. 2006 Apr 1;15(7):1195-207. doi: 10.1093/hmg/ddl035. Epub 2006 Feb 23.
13 SRPX2 promotes cell migration and invasion via FAK dependent pathway in pancreatic cancer.Int J Clin Exp Pathol. 2015 May 1;8(5):4791-8. eCollection 2015.
14 Efficient strategy for the molecular diagnosis of intellectual disability using targeted high-throughput sequencing.J Med Genet. 2014 Nov;51(11):724-36. doi: 10.1136/jmedgenet-2014-102554. Epub 2014 Aug 28.
15 High SRPX2 protein expression predicts unfavorable clinical outcome in patients with prostate cancer.Onco Targets Ther. 2018 May 28;11:3149-3157. doi: 10.2147/OTT.S158820. eCollection 2018.
16 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
17 Molecular networks implicated in speech-related disorders: FOXP2 regulates the SRPX2/uPAR complex.Hum Mol Genet. 2010 Dec 15;19(24):4848-60. doi: 10.1093/hmg/ddq415. Epub 2010 Sep 21.
18 Flexible and scalable diagnostic filtering of genomic variants using G2P with Ensembl VEP. Nat Commun. 2019 May 30;10(1):2373. doi: 10.1038/s41467-019-10016-3.
19 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
20 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
21 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
22 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
23 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
24 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
25 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
26 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
27 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
28 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
29 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
30 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
31 Characterizing the genetic basis for nicotine induced cancer development: a transcriptome sequencing study. PLoS One. 2013 Jun 18;8(6):e67252.
32 Mifepristone induced progesterone withdrawal reveals novel regulatory pathways in human endometrium. Mol Hum Reprod. 2007 Sep;13(9):641-54.
33 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
34 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
35 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
36 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
37 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.