General Information of Drug Off-Target (DOT) (ID: OT7CAG4A)

DOT Name Zinc finger protein 40 (HIVEP1)
Synonyms
Cirhin interaction protein; CIRIP; Gate keeper of apoptosis-activating protein; GAAP; Human immunodeficiency virus type I enhancer-binding protein 1; HIV-EP1; Major histocompatibility complex-binding protein 1; MBP-1; Positive regulatory domain II-binding factor 1; PRDII-BF1
Gene Name HIVEP1
Related Disease
Breast cancer ( )
Breast carcinoma ( )
Advanced cancer ( )
Dilated cardiomyopathy 1A ( )
Duchenne muscular dystrophy ( )
Endometrial cancer ( )
Endometrial carcinoma ( )
Muscular dystrophy ( )
Neoplasm ( )
Pachyonychia congenita 3 ( )
Prostate cancer ( )
Prostate carcinoma ( )
Prostate neoplasm ( )
Vibrio cholerae infection ( )
Asthma ( )
Lung cancer ( )
Lung carcinoma ( )
Lung neoplasm ( )
Non-small-cell lung cancer ( )
UniProt ID
ZEP1_HUMAN
PDB ID
1BBO; 3ZNF; 4ZNF
Pfam ID
PF00096
Sequence
MPRTKQIHPRNLRDKIEEAQKELNGAEVSKKEILQAGVKGTSESLKGVKRKKIVAENHLK
KIPKSPLRNPLQAKHKQNTEESSFAVLHSASESHKKQNYIPVKNGKQFTKQNGETPGIIA
EASKSEESVSPKKPLFLQQPSELRRWRSEGADPAKFSDLDEQCDSSSLSSKTRTDNSECI
SSHCGTTSPSYTNTAFDVLLKAMEPELSTLSQKGSPCAIKTEKLRPNKTARSPPKLKNSS
MDAPNQTSQELVAESQSSCTSYTVHMSAAQKNEQGAMQSASHLYHQHEHFVPKSNQHNQQ
LPGCSGFTGSLTNLQNQENAKLEQVYNIAVTSSVGLTSPSSRSQVTPQNQQMDSASPLSI
SPANSTQSPPMPIYNSTHVASVVNQSVEQMCNLLLKDQKPKKQGKYICEYCNRACAKPSV
LLKHIRSHTGERPYPCVTCGFSFKTKSNLYKHKKSHAHTIKLGLVLQPDAGGLFLSHESP
KALSIHSDVEDSGESEEEGATDERQHDLGAMELQPVHIIKRMSNAETLLKSSFTPSSPEN
VIGDFLLQDRSAESQAVTELPKVVVHHVTVSPLRTDSPKAMDPKPELSSAQKQKDLQVTN
VQPLSANMSQGGVSRLETNENSHQKGDMNPLEGKQDSHVGTVHAQLQRQQATDYSQEQQG
KLLSPRSLGSTDSGYFSRSESADQTVSPPTPFARRLPSTEQDSGRSNGPSAALVTTSTPS
ALPTGEKALLLPGQMRPPLATKTLEERISKLISDNEALVDDKQLDSVKPRRTSLSRRGSI
DSPKSYIFKDSFQFDLKPVGRRTSSSSDIPKSPFTPTEKSKQVFLLSVPSLDCLPITRSN
SMPTTGYSAVPANIIPPPHPLRGSQSFDDKIGAFYDDVFVSGPNAPVPQSGHPRTLVRQA
AIEDSSANESHVLGTGQSLDESHQGCHAAGEAMSVRSKALAQGPHIEKKKSHQGRGTMFE
CETCRNRYRKLENFENHKKFYCSELHGPKTKVAMREPEHSPVPGGLQPQILHYRVAGSSG
IWEQTPQIRKRRKMKSVGDDEELQQNESGTSPKSSEGLQFQNALGCNPSLPKHNVTIRSD
QQHKNIQLQNSHIHLVARGPEQTMDPKLSTIMEQQISSAAQDKIELQRHGTGISVIQHTN
SLSRPNSFDKPEPFERASPVSFQELNRTGKSGSLKVIGISQEESHPSRDGSHPHQLALSD
ALRGELQESSRKSPSERHVLGQPSRLVRQHNIQVPEILVTEEPDRDLEAQCHDQEKSEKF
SWPQRSETLSKLPTEKLPPKKKRLRLAEIEHSSTESSFDSTLSRSLSRESSLSHTSSFSA
SLDIEDVSKTEASPKIDFLNKAEFLMIPAGLNTLNVPGCHREMRRTASEQINCTQTSMEV
SDLRSKSFDCGSITPPQTTPLTELQPPSSPSRVGVTGHVPLLERRRGPLVRQISLNIAPD
SHLSPVHPTSFQNTALPSVNAVPYQGPQLTSTSLAEFSANTLHSQTQVKDLQAETSNSSS
TNVFPVQQLCDINLLNQIHAPPSHQSTQLSLQVSTQGSKPDKNSVLSGSSKSEDCFAPKY
QLHCQVFTSGPSCSSNPVHSLPNQVISDPVGTDHCVTSATLPTKLIDSMSNSHPLLPPEL
RPLGSQVQKVPSSFMLPIRLQSSVPAYCFATLTSLPQILVTQDLPNQPICQTNHSVVPIS
EEQNSVPTLQKGHQNALPNPEKEFLCENVFSEMSQNSSLSESLPITQKISVGRLSPQQES
SASSKRMLSPANSLDIAMEKHQKRAKDENGAVCATDVRPLEALSSRVNEASKQKKPILVR
QVCTTEPLDGVMLEKDVFSQPEISNEAVNLTNVLPADNSSTGCSKFVVIEPISELQEFEN
IKSSTSLTLTVRSSPAPSENTHISPLKCTDNNQERKSPGVKNQGDKVNIQEQSQQPVTSL
SLFNIKDTQQLAFPSLKTTTNFTWCYLLRQKSLHLPQKDQKTSAYTDWTVSASNPNPLGL
PTKVALALLNSKQNTGKSLYCQAITTHSKSDLLVYSSKWKSSLSKRALGNQKSTVVEFSN
KDASEINSEQDKENSLIKSEPRRIKIFDGGYKSNEEYVYVRGRGRGKYICEECGIRCKKP
SMLKKHIRTHTDVRPYHCTYCNFSFKTKGNLTKHMKSKAHSKKCVDLGVSVGLIDEQDTE
ESDEKQRFSYERSGYDLEESDGPDEDDNENEDDDEDSQAESVLSATPSVTASPQHLPSRS
SLQDPVSTDEDVRITDCFSGVHTDPMDVLPRALLTRMTVLSTAQSDYNRKTLSPGKARQR
AARDENDTIPSVDTSRSPCHQMSVDYPESEEILRSSMAGKAVAITQSPSSVRLPPAAAEH
SPQTAAGMPSVASPHPDPQEQKQQITLQPTPGLPSPHTHLFSHLPLHSQQQSRTPYNMVP
VGGIHVVPAGLTYSTFVPLQAGPVQLTIPAVSVVHRTLGTHRNTVTEVSGTTNPAGVAEL
SSVVPCIPIGQIRVPGLQNLSTPGLQSLPSLSMETVNIVGLANTNMAPQVHPPGLALNAV
GLQVLTANPSSQSSPAPQAHIPGLQILNIALPTLIPSVSQVAVDAQGAPEMPASQSKACE
TQPKQTSVASANQVSRTESPQGLPTVQRENAKKVLNPPAPAGDHARLDGLSKMDTEKAAS
ANHVKPKPELTSIQGQPASTSQPLLKAHSEVFTKPSGQQTLSPDRQVPRPTALPRRQPTV
HFSDVSSDDDEDRLVIAT
Function
This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV-1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, and interferon-beta genes. It may act in T-cell activation. Involved in activating HIV-1 gene expression. Isoform 2 and isoform 3 also bind to the IPCS (IRF1 and p53 common sequence) DNA sequence in the promoter region of interferon regulatory factor 1 and p53 genes and are involved in transcription regulation of these genes. Isoform 2 does not activate HIV-1 gene expression. Isoform 2 and isoform 3 may be involved in apoptosis.

Molecular Interaction Atlas (MIA) of This DOT

19 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Breast cancer DIS7DPX1 Definitive Biomarker [1]
Breast carcinoma DIS2UE88 Definitive Biomarker [1]
Advanced cancer DISAT1Z9 Strong Biomarker [2]
Dilated cardiomyopathy 1A DIS0RK9Z Strong Altered Expression [3]
Duchenne muscular dystrophy DISRQ3NV Strong Biomarker [4]
Endometrial cancer DISW0LMR Strong Biomarker [5]
Endometrial carcinoma DISXR5CY Strong Biomarker [5]
Muscular dystrophy DISJD6P7 Strong Biomarker [4]
Neoplasm DISZKGEW Strong Genetic Variation [6]
Pachyonychia congenita 3 DISZLC6C Strong Altered Expression [7]
Prostate cancer DISF190Y Strong Biomarker [7]
Prostate carcinoma DISMJPLE Strong Biomarker [7]
Prostate neoplasm DISHDKGQ Strong Biomarker [8]
Vibrio cholerae infection DISW7E3U Strong Biomarker [9]
Asthma DISW9QNS Disputed Biomarker [10]
Lung cancer DISCM4YA Disputed Altered Expression [11]
Lung carcinoma DISTR26C Disputed Altered Expression [11]
Lung neoplasm DISVARNB Disputed Biomarker [11]
Non-small-cell lung cancer DIS5Y6R9 Disputed Biomarker [11]
------------------------------------------------------------------------------------
⏷ Show the Full List of 19 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Zinc finger protein 40 (HIVEP1). [12]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Zinc finger protein 40 (HIVEP1). [22]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of Zinc finger protein 40 (HIVEP1). [22]
Hexadecanoic acid DMWUXDZ Investigative Hexadecanoic acid increases the phosphorylation of Zinc finger protein 40 (HIVEP1). [25]
------------------------------------------------------------------------------------
13 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Zinc finger protein 40 (HIVEP1). [13]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Zinc finger protein 40 (HIVEP1). [14]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Zinc finger protein 40 (HIVEP1). [15]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Zinc finger protein 40 (HIVEP1). [16]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Zinc finger protein 40 (HIVEP1). [17]
Epigallocatechin gallate DMCGWBJ Phase 3 Epigallocatechin gallate increases the expression of Zinc finger protein 40 (HIVEP1). [18]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Zinc finger protein 40 (HIVEP1). [19]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Zinc finger protein 40 (HIVEP1). [20]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Zinc finger protein 40 (HIVEP1). [21]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Zinc finger protein 40 (HIVEP1). [19]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Zinc finger protein 40 (HIVEP1). [23]
Coumestrol DM40TBU Investigative Coumestrol decreases the expression of Zinc finger protein 40 (HIVEP1). [24]
geraniol DMS3CBD Investigative geraniol increases the expression of Zinc finger protein 40 (HIVEP1). [26]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 Drug(s)

References

1 Negative transcriptional control of ERBB2 gene by MBP-1 and HDAC1: diagnostic implications in breast cancer.BMC Cancer. 2013 Feb 19;13:81. doi: 10.1186/1471-2407-13-81.
2 MBP-1 inhibits breast cancer growth and metastasis in immunocompetent mice.Cancer Res. 2009 Dec 15;69(24):9354-9. doi: 10.1158/0008-5472.CAN-09-2974.
3 Myc promoter-binding protein-1 (MBP-1) is a novel potential prognostic marker in invasive ductal breast carcinoma.PLoS One. 2010 Sep 23;5(9):e12961. doi: 10.1371/journal.pone.0012961.
4 Major basic protein-1 promotes fibrosis of dystrophic muscle and attenuates the cellular immune response in muscular dystrophy.Hum Mol Genet. 2008 Aug 1;17(15):2280-92. doi: 10.1093/hmg/ddn129. Epub 2008 Apr 21.
5 X chromosome-linked long noncoding RNA lnc-XLEC1 regulates c-Myc-dependent cell growth by collaborating with MBP-1 in endometrial cancer.Int J Cancer. 2019 Aug 15;145(4):927-940. doi: 10.1002/ijc.32166. Epub 2019 Feb 23.
6 Novel roles of holocarboxylase synthetase in gene regulation and intermediary metabolism.Nutr Rev. 2014 Jun;72(6):369-76. doi: 10.1111/nure.12103. Epub 2014 Mar 28.
7 Knockdown of MBP-1 in human prostate cancer cells delays cell cycle progression.J Biol Chem. 2006 Aug 18;281(33):23652-7. doi: 10.1074/jbc.M602930200. Epub 2006 Jun 8.
8 Carboxyl-terminal repressor domain of MBP-1 is sufficient for regression of prostate tumor growth in nude mice.Cancer Res. 2005 Feb 1;65(3):718-21.
9 Low concentrations mono-butyl phthalate stimulates steroidogenesis by facilitating steroidogenic acute regulatory protein expression in mouse Leydig tumor cells (MLTC-1).Chem Biol Interact. 2006 Dec 1;164(1-2):15-24. doi: 10.1016/j.cbi.2006.08.022. Epub 2006 Sep 1.
10 Charcot-Leyden crystal protein/galectin-10 is a surrogate biomarker of eosinophilic airway inflammation in asthma.Biomark Med. 2019 Jun;13(9):715-724. doi: 10.2217/bmm-2018-0280. Epub 2019 Jun 3.
11 Tumor-suppressive effects of MBP-1 in non-small cell lung cancer cells.Cancer Res. 2006 Dec 15;66(24):11907-12. doi: 10.1158/0008-5472.CAN-06-2754.
12 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
13 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
14 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
15 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
16 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
17 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
18 Epigallocatechin-3-gallate (EGCG) protects against chromate-induced toxicity in vitro. Toxicol Appl Pharmacol. 2012 Jan 15;258(2):166-75.
19 Gene expression profiling in Ishikawa cells: a fingerprint for estrogen active compounds. Toxicol Appl Pharmacol. 2009 Apr 1;236(1):85-96.
20 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
21 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
22 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
23 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
24 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
25 Functional lipidomics: Palmitic acid impairs hepatocellular carcinoma development by modulating membrane fluidity and glucose metabolism. Hepatology. 2017 Aug;66(2):432-448. doi: 10.1002/hep.29033. Epub 2017 Jun 16.
26 Geraniol suppresses prostate cancer growth through down-regulation of E2F8. Cancer Med. 2016 Oct;5(10):2899-2908.