General Information of Drug Off-Target (DOT) (ID: OTDN45FN)

DOT Name Olfactomedin-like protein 3 (OLFML3)
Synonyms HNOEL-iso; hOLF44
Gene Name OLFML3
Related Disease
Neoplasm ( )
Epilepsy ( )
Acute myelogenous leukaemia ( )
UniProt ID
OLFL3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF02191
Sequence
MGPSTPLLILFLLSWSGPLQGQQHHLVEYMERRLAALEERLAQCQDQSSRHAAELRDFKN
KMLPLLEVAEKEREALRTEADTISGRVDRLEREVDYLETQNPALPCVEFDEKVTGGPGTK
GKGRRNEKYDMVTDCGYTISQVRSMKILKRFGGPAGLWTKDPLGQTEKIYVLDGTQNDTA
FVFPRLRDFTLAMAARKASRVRVPFPWVGTGQLVYGGFLYFARRPPGRPGGGGEMENTLQ
LIKFHLANRTVVDSSVFPAEGLIPPYGLTADTYIDLAADEEGLWAVYATREDDRHLCLAK
LDPQTLDTEQQWDTPCPRENAEAAFVICGTLYVVYNTRPASRARIQCSFDASGTLTPERA
ALPYFPRRYGAHASLRYNPRERQLYAWDDGYQIVYKLEMRKKEEEV
Function
Secreted scaffold protein that plays an essential role in dorsoventral patterning during early development. Stabilizes axial formation by restricting chordin (CHRD) activity on the dorsal side. Acts by facilitating the association between the tolloid proteases and their substrate chordin (CHRD), leading to enhance chordin (CHRD) degradation. May have matrix-related function involved in placental and embryonic development, or play a similar role in other physiological processes.
Tissue Specificity
Abundant in placenta, moderate in liver and heart, whereas fairly weak in other tissues examined. On term placenta, mainly localized extracellularly surrounding the syncytiotrophoblastic cells and very rarely expressed in the maternal decidua layer.

Molecular Interaction Atlas (MIA) of This DOT

3 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Neoplasm DISZKGEW Definitive Biomarker [1]
Epilepsy DISBB28L Strong Genetic Variation [2]
Acute myelogenous leukaemia DISCSPTN Limited Genetic Variation [3]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
31 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Olfactomedin-like protein 3 (OLFML3). [4]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Olfactomedin-like protein 3 (OLFML3). [5]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Olfactomedin-like protein 3 (OLFML3). [6]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Olfactomedin-like protein 3 (OLFML3). [7]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Olfactomedin-like protein 3 (OLFML3). [8]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Olfactomedin-like protein 3 (OLFML3). [9]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Olfactomedin-like protein 3 (OLFML3). [10]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Olfactomedin-like protein 3 (OLFML3). [11]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Olfactomedin-like protein 3 (OLFML3). [12]
Triclosan DMZUR4N Approved Triclosan increases the expression of Olfactomedin-like protein 3 (OLFML3). [13]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Olfactomedin-like protein 3 (OLFML3). [14]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Olfactomedin-like protein 3 (OLFML3). [15]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Olfactomedin-like protein 3 (OLFML3). [12]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol increases the expression of Olfactomedin-like protein 3 (OLFML3). [16]
Ethanol DMDRQZU Approved Ethanol decreases the expression of Olfactomedin-like protein 3 (OLFML3). [17]
Cytarabine DMZD5QR Approved Cytarabine decreases the expression of Olfactomedin-like protein 3 (OLFML3). [18]
Paclitaxel DMLB81S Approved Paclitaxel increases the expression of Olfactomedin-like protein 3 (OLFML3). [19]
Ethinyl estradiol DMODJ40 Approved Ethinyl estradiol increases the expression of Olfactomedin-like protein 3 (OLFML3). [20]
Testosterone Undecanoate DMZO10Y Approved Testosterone Undecanoate decreases the expression of Olfactomedin-like protein 3 (OLFML3). [21]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Olfactomedin-like protein 3 (OLFML3). [22]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Olfactomedin-like protein 3 (OLFML3). [12]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the expression of Olfactomedin-like protein 3 (OLFML3). [16]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Olfactomedin-like protein 3 (OLFML3). [8]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of Olfactomedin-like protein 3 (OLFML3). [23]
Belinostat DM6OC53 Phase 2 Belinostat increases the expression of Olfactomedin-like protein 3 (OLFML3). [12]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Olfactomedin-like protein 3 (OLFML3). [9]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Olfactomedin-like protein 3 (OLFML3). [24]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Olfactomedin-like protein 3 (OLFML3). [25]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Olfactomedin-like protein 3 (OLFML3). [8]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Olfactomedin-like protein 3 (OLFML3). [26]
OXYQUINOLINE DMZVS9Y Investigative OXYQUINOLINE decreases the expression of Olfactomedin-like protein 3 (OLFML3). [9]
------------------------------------------------------------------------------------
⏷ Show the Full List of 31 Drug(s)

References

1 Targeting olfactomedin-like 3 inhibits tumor growth by impairing angiogenesis and pericyte coverage.Mol Cancer Ther. 2012 Dec;11(12):2588-99. doi: 10.1158/1535-7163.MCT-12-0245. Epub 2012 Sep 20.
2 A genome-wide association study of sodium levels and drug metabolism in an epilepsy cohort treated with carbamazepine and oxcarbazepine.Epilepsia Open. 2019 Jan 17;4(1):102-109. doi: 10.1002/epi4.12297. eCollection 2019 Mar.
3 Genome-wide haplotype association study identify the FGFR2 gene as a risk gene for acute myeloid leukemia.Oncotarget. 2017 Jan 31;8(5):7891-7899. doi: 10.18632/oncotarget.13631.
4 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
5 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
6 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
7 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
8 Convergent transcriptional profiles induced by endogenous estrogen and distinct xenoestrogens in breast cancer cells. Carcinogenesis. 2006 Aug;27(8):1567-78.
9 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
10 Essential role of cell cycle regulatory genes p21 and p27 expression in inhibition of breast cancer cells by arsenic trioxide. Med Oncol. 2011 Dec;28(4):1225-54.
11 Identification of vitamin D3 target genes in human breast cancer tissue. J Steroid Biochem Mol Biol. 2016 Nov;164:90-97.
12 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
13 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
14 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
15 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
16 Gene expression profiling in Ishikawa cells: a fingerprint for estrogen active compounds. Toxicol Appl Pharmacol. 2009 Apr 1;236(1):85-96.
17 Gene expression signatures after ethanol exposure in differentiating embryoid bodies. Toxicol In Vitro. 2018 Feb;46:66-76.
18 Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br J Pharmacol. 2011 Apr;162(8):1743-56.
19 Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009 Aug 21;138(4):645-659. doi: 10.1016/j.cell.2009.06.034. Epub 2009 Aug 13.
20 The genomic response of a human uterine endometrial adenocarcinoma cell line to 17alpha-ethynyl estradiol. Toxicol Sci. 2009 Jan;107(1):40-55.
21 Levonorgestrel enhances spermatogenesis suppression by testosterone with greater alteration in testicular gene expression in men. Biol Reprod. 2009 Mar;80(3):484-92.
22 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
23 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
24 CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Invest. 2016 Feb;126(2):639-52.
25 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
26 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.