General Information of Drug Off-Target (DOT) (ID: OTFXJAKK)

DOT Name Protein mono-ADP-ribosyltransferase PARP14 (PARP14)
Synonyms EC 2.4.2.-; ADP-ribosyltransferase diphtheria toxin-like 8; ARTD8; B aggressive lymphoma protein 2; Poly polymerase 14; PARP-14
Gene Name PARP14
Related Disease
Advanced cancer ( )
Glucagonoma ( )
Major depressive disorder ( )
Metastatic prostate carcinoma ( )
Plasma cell myeloma ( )
Skin disease ( )
B-cell lymphoma ( )
Neoplasm ( )
Pancreatic cancer ( )
Hepatocellular carcinoma ( )
Asthma ( )
UniProt ID
PAR14_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3GOY ; 3Q6Z ; 3Q71 ; 3SE2 ; 3SMI ; 3SMJ ; 3VFQ ; 4ABK ; 4ABL ; 4D86 ; 4F1L ; 4F1Q ; 4PY4 ; 5LXP ; 5LYH ; 5NQE ; 5O2D ; 5QHT ; 5QHU ; 5QHV ; 5QHW ; 5QHX ; 5QHY ; 5QHZ ; 5QI0 ; 5QI1 ; 5QI2 ; 5QI3 ; 5QI4 ; 5QI5 ; 5QI6 ; 5QI7 ; 5QI8 ; 5QI9 ; 5QIA ; 5V7T ; 5V7W ; 6FYM ; 6FZM ; 6G0W ; 6WE2 ; 6WE3 ; 6WE4 ; 7D2C ; 7L9Y ; 7LUN ; 7R3L
EC Number
2.4.2.-
Pfam ID
PF01661 ; PF00644 ; PF02825
Sequence
MAVPGSFPLLVEGSWGPDPPKNLNTKLQMYFQSPKRSGGGECEVRQDPRSPSRFLVFFYP
EDVRQKVLERKNHELVWQGKGTFKLTVQLPATPDEIDHVFEEELLTKESKTKEDVKEPDV
SEELDTKLPLDGGLDKMEDIPEECENISSLVAFENLKANVTDIMLILLVENISGLSNDDF
QVEIIRDFDVAVVTFQKHIDTIRFVDDCTKHHSIKQLQLSPRLLEVTNTIRVENLPPGAD
DYSLKLFFENPYNGGGRVANVEYFPEESSALIEFFDRKVLDTIMATKLDFNKMPLSVFPY
YASLGTALYGKEKPLIKLPAPFEESLDLPLWKFLQKKNHLIEEINDEMRRCHCELTWSQL
SGKVTIRPAATLVNEGRPRIKTWQADTSTTLSSIRSKYKVNPIKVDPTMWDTIKNDVKDD
RILIEFDTLKEMVILAGKSEDVQSIEVQVRELIESTTQKIKREEQSLKEKMIISPGRYFL
LCHSSLLDHLLTECPEIEICYDRVTQHLCLKGPSADVYKAKCEIQEKVYTMAQKNIQVSP
EIFQFLQQVNWKEFSKCLFIAQKILALYELEGTTVLLTSCSSEALLEAEKQMLSALNYKR
IEVENKEVLHGKKWKGLTHNLLKKQNSSPNTVIINELTSETTAEVIITGCVKEVNETYKL
LFNFVEQNMKIERLVEVKPSLVIDYLKTEKKLFWPKIKKVNVQVSFNPENKQKGILLTGS
KTEVLKAVDIVKQVWDSVCVKSVHTDKPGAKQFFQDKARFYQSEIKRLFGCYIELQENEV
MKEGGSPAGQKCFSRTVLAPGVVLIVQQGDLARLPVDVVVNASNEDLKHYGGLAAALSKA
AGPELQADCDQIVKREGRLLPGNATISKAGKLPYHHVIHAVGPRWSGYEAPRCVYLLRRA
VQLSLCLAEKYKYRSIAIPAISSGVFGFPLGRCVETIVSAIKENFQFKKDGHCLKEIYLV
DVSEKTVEAFAEAVKTVFKATLPDTAAPPGLPPAAAGPGKTSWEKGSLVSPGGLQMLLVK
EGVQNAKTDVVVNSVPLDLVLSRGPLSKSLLEKAGPELQEELDTVGQGVAVSMGTVLKTS
SWNLDCRYVLHVVAPEWRNGSTSSLKIMEDIIRECMEITESLSLKSIAFPAIGTGNLGFP
KNIFAELIISEVFKFSSKNQLKTLQEVHFLLHPSDHENIQAFSDEFARRANGNLVSDKIP
KAKDTQGFYGTVSSPDSGVYEMKIGSIIFQVASGDITKEEADVIVNSTSNSFNLKAGVSK
AILECAGQNVERECSQQAQQRKNDYIITGGGFLRCKNIIHVIGGNDVKSSVSSVLQECEK
KNYSSICLPAIGTGNAKQHPDKVAEAIIDAIEDFVQKGSAQSVKKVKVVIFLPQVLDVFY
ANMKKREGTQLSSQQSVMSKLASFLGFSKQSPQKKNHLVLEKKTESATFRVCGENVTCVE
YAISWLQDLIEKEQCPYTSEDECIKDFDEKEYQELNELQKKLNINISLDHKRPLIKVLGI
SRDVMQARDEIEAMIKRVRLAKEQESRADCISEFIEWQYNDNNTSHCFNKMTNLKLEDAR
REKKKTVDVKINHRHYTVNLNTYTATDTKGHSLSVQRLTKSKVDIPAHWSDMKQQNFCVV
ELLPSDPEYNTVASKFNQTCSHFRIEKIERIQNPDLWNSYQAKKKTMDAKNGQTMNEKQL
FHGTDAGSVPHVNRNGFNRSYAGKNAVAYGKGTYFAVNANYSANDTYSRPDANGRKHVYY
VRVLTGIYTHGNHSLIVPPSKNPQNPTDLYDTVTDNVHHPSLFVAFYDYQAYPEYLITFR
K
Function
ADP-ribosyltransferase that mediates mono-ADP-ribosylation of glutamate residues on target proteins. In contrast to PARP1 and PARP2, it is not able to mediate poly-ADP-ribosylation. Has been shown to catalyze the mono-ADP-ribosylation of STAT1 at 'Glu-657' and 'Glu-705', thus decreasing STAT1 phosphorylation which negatively regulates pro-inflammatory cytokine production in macrophages in response to IFNG stimulation. However, the role of ADP-ribosylation in the prevention of STAT1 phosphorylation has been called into question and it has been suggested that the inhibition of phosphorylation may be the result of sumoylation of STAT1 'Lys-703'. Mono-ADP-ribosylates STAT6; enhancing STAT6-dependent transcription. In macrophages, positively regulates MRC1 expression in response to IL4 stimulation by promoting STAT6 phosphorylation. Mono-ADP-ribosylates PARP9.
Tissue Specificity Expressed in macrophages.
Reactome Pathway
Maturation of nucleoprotein (R-HSA-9683610 )
Maturation of nucleoprotein (R-HSA-9694631 )
Nicotinamide salvaging (R-HSA-197264 )

Molecular Interaction Atlas (MIA) of This DOT

11 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Advanced cancer DISAT1Z9 Strong Biomarker [1]
Glucagonoma DISDU90K Strong Biomarker [1]
Major depressive disorder DIS4CL3X Strong Genetic Variation [2]
Metastatic prostate carcinoma DISVBEZ9 Strong Biomarker [3]
Plasma cell myeloma DIS0DFZ0 Strong Biomarker [4]
Skin disease DISDW8R6 Strong Biomarker [5]
B-cell lymphoma DISIH1YQ moderate Biomarker [4]
Neoplasm DISZKGEW moderate Biomarker [4]
Pancreatic cancer DISJC981 moderate Altered Expression [6]
Hepatocellular carcinoma DIS0J828 Disputed Biomarker [4]
Asthma DISW9QNS Limited Biomarker [7]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
13 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Protein mono-ADP-ribosyltransferase PARP14 (PARP14). [8]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Protein mono-ADP-ribosyltransferase PARP14 (PARP14). [9]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Protein mono-ADP-ribosyltransferase PARP14 (PARP14). [10]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Protein mono-ADP-ribosyltransferase PARP14 (PARP14). [11]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Protein mono-ADP-ribosyltransferase PARP14 (PARP14). [12]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Protein mono-ADP-ribosyltransferase PARP14 (PARP14). [13]
Triclosan DMZUR4N Approved Triclosan increases the expression of Protein mono-ADP-ribosyltransferase PARP14 (PARP14). [14]
Fluorouracil DMUM7HZ Approved Fluorouracil increases the expression of Protein mono-ADP-ribosyltransferase PARP14 (PARP14). [15]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Protein mono-ADP-ribosyltransferase PARP14 (PARP14). [16]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Protein mono-ADP-ribosyltransferase PARP14 (PARP14). [17]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Protein mono-ADP-ribosyltransferase PARP14 (PARP14). [18]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Protein mono-ADP-ribosyltransferase PARP14 (PARP14). [19]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Protein mono-ADP-ribosyltransferase PARP14 (PARP14). [22]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 Drug(s)
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
PJ34 DMXO6YH Preclinical PJ34 affects the binding of Protein mono-ADP-ribosyltransferase PARP14 (PARP14). [20]
------------------------------------------------------------------------------------
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Protein mono-ADP-ribosyltransferase PARP14 (PARP14). [21]
------------------------------------------------------------------------------------

References

1 PARP-14 Promotes Survival of Mammalian but Not Pancreatic Cells Following Cytokine Treatment.Front Endocrinol (Lausanne). 2019 May 3;10:271. doi: 10.3389/fendo.2019.00271. eCollection 2019.
2 A Novel Relationship for Schizophrenia, Bipolar, and Major Depressive Disorder. Part 8: a Hint from Chromosome 8 High Density Association Screen.Mol Neurobiol. 2017 Oct;54(8):5868-5882. doi: 10.1007/s12035-016-0102-1. Epub 2016 Sep 22.
3 DTX3L and ARTD9 inhibit IRF1 expression and mediate in cooperation with ARTD8 survival and proliferation of metastatic prostate cancer cells.Mol Cancer. 2014 May 27;13:125. doi: 10.1186/1476-4598-13-125.
4 Research Progress on PARP14 as a Drug Target.Front Pharmacol. 2019 Mar 5;10:172. doi: 10.3389/fphar.2019.00172. eCollection 2019.
5 Poly-ADP ribose polymerase-14 limits severity of allergic skin disease.Immunology. 2017 Nov;152(3):451-461. doi: 10.1111/imm.12782. Epub 2017 Jul 27.
6 PARP14 promotes the proliferation and gemcitabine chemoresistance of pancreatic cancer cells through activation of NF-B pathway.Mol Carcinog. 2019 Jul;58(7):1291-1302. doi: 10.1002/mc.23011. Epub 2019 Apr 10.
7 Asthma and poly(ADP-ribose) polymerase inhibition: a new therapeutic approach.Drug Des Devel Ther. 2018 Feb 12;12:281-293. doi: 10.2147/DDDT.S150846. eCollection 2018.
8 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
9 Retinoic acid receptor alpha amplifications and retinoic acid sensitivity in breast cancers. Clin Breast Cancer. 2013 Oct;13(5):401-8.
10 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
11 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
12 Persistent and non-persistent changes in gene expression result from long-term estrogen exposure of MCF-7 breast cancer cells. J Steroid Biochem Mol Biol. 2011 Feb;123(3-5):140-50.
13 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
14 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
15 Gene expression profiling of breast cancer cells in response to gemcitabine: NF-kappaB pathway activation as a potential mechanism of resistance. Breast Cancer Res Treat. 2007 Apr;102(2):157-72.
16 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
17 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
18 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
19 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
20 Identification of pim kinases as novel targets for PJ34 with confounding effects in PARP biology. ACS Chem Biol. 2012 Dec 21;7(12):1962-7. doi: 10.1021/cb300317y. Epub 2012 Oct 8.
21 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
22 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.