General Information of Disease (ID: DIS0DFZ0)

Disease Name Plasma cell myeloma
Synonyms
myeloma - multiple; amyloidosis, systemic; Al amyloidosis; plasma cell myeloma; myeloma; multiple myeloma, resistance to, Somatic mutation; myeloma, plasma cell, malignant; multiple myeloma, susceptibility to, Somatic mutation; multiple myeloma; multiple myeloma/plasma cell myeloma; medullary plasmacytoma; Multiple Myeloma; myelomatosis; plasma cell myeloid neoplasm; Kahler's disease; myeloid neoplasm of plasma cell; Kahler disease; myeloma, multiple
Disease Class 2A83: Multiple myeloma
Definition
A bone marrow-based plasma cell neoplasm characterized by a serum monoclonal protein and skeletal destruction with osteolytic lesions, pathological fractures, bone pain, hypercalcemia, and anemia. Clinical variants include non-secretory myeloma, smoldering myeloma, indolent myeloma, and plasma cell leukemia. (WHO, 2001)
Disease Hierarchy
DIS2PJJM: Plasma cell neoplasm
DIS2YOWO: Myeloid neoplasm
DISIT4DK: Immune system cancer
DIS0DFZ0: Plasma cell myeloma
ICD Code
ICD-11
ICD-11: 2A83.1
ICD-10
ICD-10: C90.0
Expand ICD-11
'2A83.1
Expand ICD-10
'C90.0
Disease Identifiers
MONDO ID
MONDO_0009693
MESH ID
D009101
UMLS CUI
C0026764
OMIM ID
254500
MedGen ID
10122
HPO ID
HP:0006775
Orphanet ID
29073
SNOMED CT ID
109989006

Drug-Interaction Atlas (DIA) of This Disease

Drug-Interaction Atlas (DIA)
This Disease is Treated as An Indication in 34 Approved Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
Azacitidine DMTA5OE Approved Small molecular drug [1]
Bexarotene DMOBIKY Approved Small molecular drug [2]
Bortezomib DMNO38U Approved Small molecular drug [3]
Carfilzomib DM48K0X Approved Small molecular drug [4]
Cetuximab DMLNCE0 Approved Antibody [5]
Cisplatin DMRHGI9 Approved Small molecular drug [6]
Clofarabine DMCVJ86 Approved Small molecular drug [7]
Cyclophosphamide DM4O2Z7 Approved Small molecular drug [8]
Cytarabine DMZD5QR Approved Small molecular drug [9]
Dasatinib DMJV2EK Approved Small molecular drug [10]
Defibrotide DM6CWSO Approved NA [11]
Denileukin diftitox DMMHR1U Approved NA [12]
Dexamethasone DMMWZET Approved Small molecular drug [13]
Doxorubicin DMVP5YE Approved Small molecular drug [14]
DTI-015 DMXZRW0 Approved Small molecular drug [12]
Etodolac DM6WJO9 Approved Small molecular drug [15]
Etoposide DMNH3PG Approved Small molecular drug [16]
Everolimus DM8X2EH Approved Small molecular drug [17]
Isatuximab DMF7HVU Approved NA [18]
Lenalidomide DM6Q7U4 Approved Small molecular drug [19]
Leuprolide DM5XPIJ Approved Small molecular drug [20]
Melphalan DMOLNHF Approved Small molecular drug [21]
Melphalan flufenamide DMWF5R4 Approved Small molecular drug [22]
Panobinostat DM58WKG Approved Small molecular drug [23]
Pegfilgrastim DM7UP8X Approved Small molecular drug [24]
Pomalidomide DMTGBAX Approved Small molecular drug [25]
Prednisone DM2HG4X Approved Small molecular drug [26]
Sirolimus DMGW1ID Approved Small molecular drug [27]
Succinylcholine DM2ET1M Approved Small molecular drug [28]
Tadalafil DMJZHT1 Approved Small molecular drug [29]
Thalidomide DM70BU5 Approved Small molecular drug [30]
Vincristine DMINOX3 Approved Small molecular drug [31]
Vitamin C DMXJ7O8 Approved Small molecular drug [32]
Vorinostat DMWMPD4 Approved Small molecular drug [33]
------------------------------------------------------------------------------------
⏷ Show the Full List of 34 Drug(s)
This Disease is Treated as An Indication in 5 Clinical Trial Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
PDX-101 DM6OC53 Phase 2 Small molecular drug [34]
Autologous Anti-BCMA-CAR-expressing CD4+/CD8+ T-lymphocytes FCARH143 DMKNMAE Phase 1 CAR T Cell Therapy [35]
BCMA-specific CAR-expressing T Lymphocytes DMW0ZDF Phase 1 CAR T Cell Therapy [36]
CS1-CAR T Therapy DMU8OCN Phase 1 CAR T Cell Therapy [37]
SAR442085 DM5UXAB Phase 1 Antibody [38]
------------------------------------------------------------------------------------

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 396 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
ADCYAP1 TTW4LYC Limited Biomarker [39]
ADCYAP1R1 TT5OREU Limited Biomarker [40]
ALCAM TT2AFT6 Limited Biomarker [41]
ALPI TTHYMUV Limited Biomarker [42]
ATRAID TTFLIKM Limited Biomarker [43]
AURKB TT9RTBL Limited Posttranslational Modification [44]
BIRC2 TTQ5LRD Limited Biomarker [45]
BST2 TT90BJT Limited Altered Expression [46]
BTG1 TTL7N2W Limited Biomarker [47]
CARM1 TTIZQFJ Limited Biomarker [48]
CASP10 TTX5HEK Limited Biomarker [49]
CCL20 TT2XAZY Limited Altered Expression [50]
CCR6 TTFDB30 Limited Biomarker [51]
CD52 TTQT5S9 Limited Altered Expression [52]
CD70 TTNCIE0 Limited Altered Expression [53]
CD74 TTCMYP9 Limited Altered Expression [54]
CD86 TT53XHB Limited Biomarker [55]
CDH2 TT1WS0T Limited Biomarker [56]
CDK5 TTL4Q97 Limited Altered Expression [57]
CDKN2C TTBRUGA Limited Biomarker [58]
CRTC2 TTFWETR Limited Biomarker [59]
CRYZ TTP6UO8 Limited Genetic Variation [60]
CYP2C19 TTZ58XG Limited Altered Expression [61]
DIABLO TTN74LE Limited Biomarker [62]
DLK1 TTF4AVB Limited Biomarker [63]
EPHA4 TTG84D3 Limited Altered Expression [57]
F11R TT3C8EG Limited Biomarker [64]
FCGR2A TTXT21W Limited Biomarker [65]
FLT3 TTGJCWZ Limited Altered Expression [66]
FOLH1 TT9G4N0 Limited Altered Expression [67]
GAS6 TT69QD2 Limited Altered Expression [68]
HNF1A TT01M3K Limited Altered Expression [69]
HNRNPA1 TTPJ9XK Limited Altered Expression [70]
IAPP TTHN8EM Limited Biomarker [42]
IFNAR1 TTSYFMA Limited Biomarker [71]
IKBKB TTJ3E9X Limited Genetic Variation [72]
IL21R TTZO9B0 Limited Biomarker [73]
IRAK1 TTXAJWN Limited Biomarker [74]
IRF8 TTHUBNK Limited Biomarker [75]
KDM3A TTKXS4A Limited Altered Expression [76]
KITLG TTDJ51N Limited Biomarker [77]
LAIR1 TTSI7A8 Limited Genetic Variation [78]
LDHA TTW76JE Limited Altered Expression [79]
LTA TTP73TM Limited Genetic Variation [80]
MAGEC1 TT9M6NA Limited Altered Expression [81]
MAGEC2 TTKGUEB Limited Biomarker [82]
MAP3K7 TTJQT60 Limited Biomarker [83]
MBTPS1 TTNSM2I Limited Biomarker [84]
MELK TTBZOTY Limited Biomarker [85]
MKNK1 TTEZAUX Limited Biomarker [86]
MTDH TTH6SA5 Limited Biomarker [87]
NPM1 TTHBS98 Limited Biomarker [88]
PDPK1 TTYMGWX Limited Altered Expression [89]
PLK2 TT976FS Limited Biomarker [90]
RRM1 TTWP0NS Limited Biomarker [91]
SEMA3A TTVKD3S Limited Biomarker [92]
SLC16A1 TTN1J82 Limited Biomarker [93]
SLC22A2 TT0XOJN Limited Biomarker [94]
SP1 TTZEP6S Limited Altered Expression [95]
THPO TTCG5PE Limited Biomarker [96]
TNFRSF10B TTW20TU Limited Biomarker [97]
TNFRSF13B TTL9OD4 Limited Biomarker [98]
TNFSF14 TTKVENM Limited Biomarker [99]
TXNRD1 TTR7UJ3 Limited Biomarker [100]
ATF4 TTQCKWT Disputed Altered Expression [101]
CCNE1 TTCEJ4F Disputed Altered Expression [102]
CD163 TTTZ9DE Disputed Biomarker [103]
CD33 TTJVYO3 Disputed Biomarker [104]
CEACAM6 TTIGH2W Disputed Biomarker [105]
CX3CL1 TT1OFBQ Disputed Biomarker [106]
IGFBP2 TTU4QSN Disputed Biomarker [107]
KDM1A TTNR0UQ Disputed Altered Expression [108]
MAPKAPK2 TTMUG9D Disputed Biomarker [109]
PAK4 TT7Y3BZ Disputed Biomarker [110]
ROR2 TTUDPCI Disputed Biomarker [111]
SLC40A1 TT6Y1PG Disputed Biomarker [112]
SMPD1 TTJTM88 Disputed Biomarker [113]
TNFRSF9 TTPW9LJ Disputed Biomarker [114]
UCHL5 TTSX29Z Disputed Biomarker [115]
ARF1 TT70KXY moderate Biomarker [116]
ASIC3 TTLGDIS moderate Biomarker [117]
CASP2 TT12VNG moderate Altered Expression [118]
CBX7 TTBN3HC moderate Biomarker [119]
CDK7 TTQYF7G moderate Biomarker [120]
CEACAM1 TTA9CK4 moderate Altered Expression [121]
CIT TT3BKTU moderate Biomarker [122]
DOT1L TTSZ8T1 moderate Biomarker [123]
DPP8 TTJGLZF moderate Biomarker [124]
DUSP5 TTZN92A moderate Biomarker [125]
DYRK2 TT84OS6 moderate Biomarker [126]
FCGRT TTKLPHO moderate Biomarker [127]
FOLR2 TTT54CI moderate Altered Expression [128]
GLO1 TTV9A7R moderate Biomarker [129]
GRB2 TTEYRJ9 moderate Biomarker [130]
HMBS TTT0HW3 moderate Biomarker [131]
HOXA11 TTEX4ZA moderate Biomarker [132]
IGF2R TTPNE41 moderate Altered Expression [133]
IL10RB TTJTRMK moderate Genetic Variation [134]
KMO TTIY56R moderate Biomarker [135]
LAMP1 TTC214J moderate Biomarker [136]
LIN28A TTO50LN moderate Biomarker [137]
MAP3K10 TT9FN4J moderate Biomarker [138]
MAP3K14 TT4LIAC moderate Genetic Variation [139]
MMP15 TTNSTO3 moderate Biomarker [140]
NAGLU TTDM6HZ moderate Biomarker [141]
NEDD4 TT1QU6G moderate Altered Expression [142]
NPPB TTY63XT moderate Biomarker [143]
NR1H2 TTXA6PH moderate Altered Expression [144]
NTF3 TTZHKV9 moderate Biomarker [145]
PDCD1LG2 TTW14O3 moderate Biomarker [146]
PFKFB3 TTTHMQJ moderate Biomarker [147]
PIKFYVE TTA4M1N moderate Altered Expression [148]
PPP3CA TTA4LDE moderate Biomarker [149]
PRMT5 TTR1D7X moderate Biomarker [150]
PSMB5 TT68GPI moderate Genetic Variation [151]
RACK1 TTJ10AL moderate Altered Expression [152]
RICTOR TT143WL moderate Altered Expression [153]
RNF6 TT4S09X moderate Biomarker [154]
RRM2 TT1S4LJ moderate Biomarker [155]
RYR1 TTU5CIX moderate Biomarker [156]
SEMA4D TT5UT28 moderate Biomarker [157]
TRPM8 TTXDKTO moderate Altered Expression [158]
UBA1 TTXHWA7 moderate Altered Expression [159]
UBE2T TT0A1R8 moderate Biomarker [160]
USP1 TTG9MT5 moderate Biomarker [161]
ABCB4 TTJUXV6 Strong Biomarker [162]
ABCC1 TTOI92F Strong Biomarker [163]
ABCC2 TTFLHJV Strong Genetic Variation [164]
ABCG2 TTIMJ02 Strong Biomarker [165]
ABL1 TT6B75U Strong Biomarker [166]
ACVR2A TTX2DRI Strong Biomarker [167]
ACVRL1 TTGYPTC Strong Genetic Variation [168]
ADK TTL732K Strong Altered Expression [169]
AHCY TTE2KUJ Strong Altered Expression [170]
AICDA TTKRTP6 Strong Genetic Variation [171]
AIMP2 TTXWHGF Strong Biomarker [172]
ANG TTURHFP Strong Altered Expression [173]
ANGPT1 TTWNQ1T Strong Biomarker [174]
ANXA2 TT4YANI Strong Biomarker [175]
ANXA2R TTM7D9O Strong Biomarker [176]
ANXA5 TT2Z83I Strong Biomarker [177]
APEX1 TTHGL48 Strong Biomarker [178]
AREG TT76B3W Strong Biomarker [179]
AURKA TTPS3C0 Strong Biomarker [180]
B2M TTY7FKA Strong Altered Expression [181]
BAK1 TTFM7V0 Strong Genetic Variation [182]
BCL2 TTFOUV4 Strong Biomarker [183]
BCL2L1 TTRE6AX Strong Altered Expression [184]
BCL6 TTC9YX5 Strong Altered Expression [185]
BIRC3 TTAIWZN Strong Altered Expression [42]
BMI1 TTIPNSR Strong Biomarker [119]
BMP2 TTP3IGX Strong Biomarker [186]
BMP6 TT07RIB Strong Biomarker [187]
BRD4 TTSRAOU Strong Biomarker [188]
BSG TT5UJWD Strong Biomarker [189]
CA13 TTQPHSR Strong Biomarker [190]
CASP9 TTB6T7O Strong Altered Expression [62]
CASR TTBUYHA Strong Biomarker [191]
CCL2 TTNAY0P Strong Altered Expression [192]
CCN1 TTPK79J Strong Biomarker [193]
CCND3 TT1JXNR Strong Altered Expression [194]
CCR1 TTC24WT Strong Biomarker [195]
CCR7 TT2GIDQ Strong Biomarker [196]
CD200 TT0BE68 Strong Biomarker [197]
CD22 TTM6QSK Strong Biomarker [198]
CD24 TTCTYNP Strong Altered Expression [199]
CD27 TTDO1MV Strong Altered Expression [200]
CD276 TT6CQUM Strong Biomarker [201]
CD28 TTQ13FT Strong Altered Expression [202]
CD38 TTPURFN Strong Biomarker [127]
CD40 TT1ERKL Strong Altered Expression [203]
CD40LG TTIJP3Q Strong Biomarker [204]
CD44 TTWFBT7 Strong Biomarker [205]
CD47 TT28S46 Strong Biomarker [206]
CD79B TTBN5I7 Strong Altered Expression [207]
CD80 TT89Z17 Strong Altered Expression [208]
CD83 TTT9MRQ Strong Altered Expression [209]
CDC20 TTBKFDV Strong Biomarker [210]
CDC25C TTESBNC Strong Altered Expression [211]
CDC37 TT5SOEU Strong Altered Expression [212]
CDK1 TTH6V3D Strong Biomarker [213]
CDK2 TT7HF4W Strong Genetic Variation [214]
CDK4 TT0PG8F Strong Biomarker [215]
CDK6 TTO0FDJ Strong Altered Expression [216]
CDK9 TT1LVF2 Strong Biomarker [217]
CEBPA TT5LWG1 Strong Altered Expression [218]
CFLAR TTJZQYH Strong Altered Expression [219]
CHEK1 TTTU902 Strong Biomarker [220]
CHUK TT1F8OQ Strong Altered Expression [221]
CLEC12A TT70N8V Strong Genetic Variation [222]
CR2 TT0HUN7 Strong Biomarker [223]
CRK TTFEUYR Strong Biomarker [172]
CRTC1 TT4GO0F Strong Biomarker [224]
CSF2 TTNYZG2 Strong Biomarker [225]
CSNK1A1 TTFQEMX Strong Biomarker [226]
CTAG1A TTE5ITK Strong Biomarker [227]
CTDSP1 TTHZAF0 Strong Biomarker [228]
CXCL11 TTWG0RE Strong Altered Expression [229]
CXCR3 TT1UCIJ Strong Biomarker [230]
CXCR4 TTBID49 Strong Biomarker [231]
CXCR5 TTIW59R Strong Genetic Variation [232]
DDIT4 TTVEOY6 Strong Biomarker [233]
DDX5 TTZKPVC Strong Biomarker [234]
DEK TT1NMGV Strong Altered Expression [235]
DEPDC1 TT8S9CM Strong Biomarker [236]
DEPTOR TTLYP6D Strong Biomarker [224]
DIO1 TTU3X26 Strong Genetic Variation [237]
DNASE1 TTYWGOJ Strong Genetic Variation [238]
DPP4 TTDIGC1 Strong Biomarker [239]
DUSP8 TTK0TF2 Strong Biomarker [240]
EGLN1 TT9ISBX Strong Altered Expression [241]
EIF4E TTZGCP6 Strong Altered Expression [189]
ENPP2 TTSCIM2 Strong Biomarker [242]
EPHA3 TTHS2LR Strong Biomarker [243]
EZH1 TTNJA0C Strong Biomarker [244]
EZH2 TT9MZCQ Strong Biomarker [245]
F9 TTFEZ5Q Strong Biomarker [119]
FCAR TTGUJAO Strong Biomarker [246]
FCER2 TTCH6MU Strong Biomarker [247]
FCGR2B TT5RWKQ Strong Biomarker [65]
FDPS TTIKWV4 Strong Genetic Variation [248]
FLT4 TTDCBX5 Strong Biomarker [249]
FURIN TTH9WF6 Strong Biomarker [250]
GBA TT1B5PU Strong Altered Expression [251]
GEM TTAZF9M Strong Altered Expression [252]
GLIPR1 TTEQF1O Strong Altered Expression [253]
GLMN TT2UV5C Strong Biomarker [254]
GPRC5D TTHRAPJ Strong Biomarker [255]
GRM3 TT8A9EF Strong Biomarker [256]
GRN TT0LWE3 Strong Biomarker [257]
HCK TT42OGM Strong Biomarker [258]
HDAC3 TT4YWTO Strong Biomarker [259]
HDAC4 TTTQGH8 Strong Altered Expression [260]
HDAC9 TT8M4E1 Strong Biomarker [261]
HGFAC TTD96RW Strong Biomarker [262]
HLA-A TTHONFT Strong Biomarker [263]
HLA-G TTLKFB3 Strong Biomarker [264]
HNF4A TT2F3CD Strong Altered Expression [265]
HPSE TTR7GJO Strong Biomarker [266]
HSF1 TTN6STZ Strong Biomarker [267]
HSP90AA1 TT78R5H Strong Biomarker [268]
HSP90B1 TTFPKXQ Strong Altered Expression [269]
HSPA5 TTW26OG Strong Biomarker [270]
HSPA8 TTMQL3K Strong Biomarker [271]
HSPB1 TT9AZWY Strong Altered Expression [272]
ID1 TTBXVDE Strong Altered Expression [273]
IDH1 TTV2A1R Strong Biomarker [274]
IDUA TT0IUKX Strong Biomarker [275]
IFNA2 TTSIUJ9 Strong Therapeutic [276]
IKZF3 TTCZVFZ Strong Altered Expression [277]
IL11RA TTZPLJS Strong Altered Expression [278]
IL12RB2 TT4SWR8 Strong Biomarker [279]
IL15 TTJFA35 Strong Altered Expression [280]
IL16 TTW4R0B Strong Biomarker [281]
IL1RL1 TT4GZA4 Strong Genetic Variation [282]
IL21 TT9QEJ6 Strong Altered Expression [283]
IL32 TTD4G7L Strong Altered Expression [284]
INPP5D TTTP2Z1 Strong Biomarker [285]
ITGA4 TTJMF9P Strong Biomarker [286]
ITGA5 TTHIZP9 Strong Altered Expression [287]
ITGA8 TT1FW8B Strong Altered Expression [288]
ITGAL TT48WR6 Strong Altered Expression [289]
ITGB1 TTBVIQC Strong Biomarker [286]
ITGB7 TTLT9XQ Strong Biomarker [290]
JAG2 TTOJY1B Strong Biomarker [291]
KIT TTX41N9 Strong Genetic Variation [292]
KLRC1 TTC4IMS Strong Biomarker [293]
KLRK1 TTLRN4A Strong Biomarker [294]
KRAS TTM8FR7 Strong Biomarker [295]
LGALS1 TTO3NYT Strong Biomarker [296]
LGR4 TTY6C71 Strong Biomarker [297]
LONP1 TTM1VPZ Strong Biomarker [298]
LRP1 TTF2V7I Strong Altered Expression [299]
LY9 TTZCL1U Strong Biomarker [300]
MAGEA1 TT63M7Q Strong Altered Expression [301]
MAP2K7 TT6QY3J Strong Biomarker [302]
MAP3K8 TTGECUM Strong Biomarker [303]
MAPK7 TTU6FSC Strong Biomarker [304]
MAPK8 TT0K6EO Strong Biomarker [305]
MAPK9 TT3IVG2 Strong Altered Expression [306]
MAPKAP1 TTWDKCL Strong Biomarker [307]
MARCKS TTHRM39 Strong Biomarker [308]
MBL2 TTMQDZ5 Strong Biomarker [309]
MDM2 TT9TE0O Strong Biomarker [310]
MDM4 TT9OUDQ Strong Biomarker [163]
MME TT5TKPM Strong Biomarker [311]
MMP8 TTGA1IV Strong Altered Expression [312]
MUC1 TTBHFYQ Strong Biomarker [313]
MYCBP TTVW4XU Strong Altered Expression [314]
MYD88 TTB6Q2O Strong Genetic Variation [315]
NAMPT TTD1WIG Strong Altered Expression [316]
NCAM1 TTVXPHT Strong Altered Expression [317]
NCK1 TTMA3VF Strong Genetic Variation [182]
NCR1 TTQNRJM Strong Altered Expression [318]
NEDD8 TTNDC4K Strong Altered Expression [319]
NEK2 TT3VZ24 Strong Biomarker [320]
NFKB2 TTKLNRV Strong Biomarker [321]
NFKBIA TTSHAEB Strong Genetic Variation [322]
NR1I3 TTRANFM Strong Biomarker [191]
NR3C1 TTOZRK6 Strong Biomarker [154]
NRAS TTW2R9X Strong Biomarker [295]
NUAK1 TT65FL0 Strong Biomarker [323]
ODC1 TTUMGNO Strong Biomarker [324]
OSM TTIVXSE Strong Altered Expression [185]
PABPC1 TTHC8EF Strong Biomarker [325]
PADI4 TTQHAXM Strong Biomarker [326]
PAM TTF4ZPC Strong Biomarker [327]
PARP1 TTVDSZ0 Strong Biomarker [328]
PAX5 TTA4REJ Strong Biomarker [329]
PBK TTMY6BZ Strong Altered Expression [330]
PCNA TTLG1PD Strong Biomarker [331]
PDCD1 TTNBFWK Strong Genetic Variation [332]
PDK1 TTCZOF2 Strong Biomarker [333]
PDXP TT9UYG4 Strong Biomarker [334]
PDZK1 TTDTBLM Strong Biomarker [335]
PF4 TTSG7Q5 Strong Biomarker [181]
PIM1 TTTN5QW Strong Biomarker [336]
PIM2 TT69J2Z Strong Biomarker [337]
PKD2L1 TTAHD89 Strong Biomarker [249]
PMEL TT8MK59 Strong Biomarker [321]
PRAME TTPH7T0 Strong Biomarker [338]
PRDX4 TTPBL9I Strong Altered Expression [269]
PRDX5 TTLPJWH Strong Altered Expression [339]
PSMD10 TT2H4LN Strong Altered Expression [340]
PTGS1 TT8NGED Strong Biomarker [341]
PTK2B TTTEFBV Strong Biomarker [342]
PTPN11 TT7WUAV Strong Biomarker [343]
PTPRC TTUS45N Strong Altered Expression [344]
RECK TTRZBW7 Strong Altered Expression [345]
ROR1 TTDEJAU Strong Biomarker [346]
RPS6KA3 TTUM2ZR Strong Biomarker [89]
RPSA TTLUW5B Strong Biomarker [347]
RUNX2 TTD6SZ8 Strong Altered Expression [348]
S100A9 TT0TMQG Strong Altered Expression [349]
S1PR1 TT9JZCK Strong Altered Expression [350]
SCT TTOBVIN Strong Biomarker [351]
SDC1 TTYDSVG Strong Altered Expression [352]
SELPLG TTS5K8U Strong Biomarker [353]
SH3GL1 TTTYNAM Strong Biomarker [354]
SKP2 TT5B2EO Strong Altered Expression [355]
SLAMF7 TT7ILZ1 Strong Biomarker [356]
SLC16A3 TTG6VD5 Strong Biomarker [357]
SLC2A12 TTZO36H Strong Biomarker [358]
SLC2A4 TTP6MT5 Strong Altered Expression [359]
SLC2A9 TTIF3GB Strong Biomarker [360]
SLC30A8 TTXIGT7 Strong Genetic Variation [361]
SLC38A1 TT1YE9Z Strong Biomarker [362]
SLC3A2 TT5CZSM Strong Altered Expression [363]
SLC7A5 TTPH2JB Strong Genetic Variation [364]
SMAD1 TT9GR53 Strong Biomarker [167]
SOD2 TT9O4C5 Strong Altered Expression [365]
SOST TTYRO4F Strong Altered Expression [366]
SPARC TTBQFM7 Strong Biomarker [367]
SPHK2 TTCN0M9 Strong Biomarker [368]
SRGN TTCHB06 Strong Altered Expression [369]
STEAP1 TT9E64S Strong Altered Expression [370]
STOML2 TTOI329 Strong Genetic Variation [371]
TACC3 TTQ4UFD Strong Altered Expression [372]
TCL1A TTUKRDV Strong Altered Expression [314]
TDG TTEXRQD Strong Altered Expression [373]
TERF1 TT1Y6J2 Strong Altered Expression [374]
TERF2 TT5XSLT Strong Biomarker [374]
TMSB4X TTMVAIU Strong Altered Expression [375]
TNFRSF10A TT5WLRX Strong Biomarker [97]
TNFRSF11A TT3K9S2 Strong Altered Expression [376]
TNFRSF13C TT7NJSE Strong Altered Expression [377]
TNFRSF18 TTG6LA7 Strong Biomarker [378]
TNFSF10 TTA5MS9 Strong Altered Expression [379]
TNFSF11 TT9E8HR Strong Biomarker [380]
TNFSF13 TTOI1RM Strong Biomarker [98]
TNFSF13B TTWMIDN Strong Biomarker [381]
TNIK TTPB1W3 Strong Biomarker [382]
TNKS TTVUSO7 Strong Altered Expression [374]
TOP1 TTGTQHC Strong Biomarker [383]
TPP1 TTOVYPT Strong Biomarker [384]
TPX2 TT0PHL4 Strong Biomarker [321]
TRAF6 TTCDR6M Strong Biomarker [385]
TRPC1 TTA76X0 Strong Altered Expression [386]
TRPV2 TTBECWA Strong Altered Expression [387]
TSPAN7 TTMT6VE Strong Altered Expression [388]
TTK TTP7EGM Strong Biomarker [275]
TXN TTZJ5U9 Strong Biomarker [389]
TYRO3 TTIEMFN Strong Biomarker [390]
UGCG TTPHEX3 Strong Biomarker [391]
USP14 TTVSYP9 Strong Biomarker [115]
USP5 TTGYTMA Strong Altered Expression [392]
USP7 TTXU3EQ Strong Biomarker [393]
VCAM1 TTHCEF6 Strong Altered Expression [385]
VCP TTHNLSB Strong Biomarker [394]
VDAC1 TTAMKGB Strong Biomarker [395]
XIAP TTK3WBU Strong Biomarker [396]
XPO1 TTCJUR4 Strong Biomarker [397]
XRCC5 TTCB9KW Strong Genetic Variation [398]
ZAP70 TTUMHT8 Strong Altered Expression [399]
ZUP1 TTZC0KV Strong Biomarker [400]
LAG3 TTNVXAW Definitive Biomarker [401]
------------------------------------------------------------------------------------
⏷ Show the Full List of 396 DTT(s)
This Disease Is Related to 14 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
SLC25A37 DTLBGTZ moderate Biomarker [402]
SLC26A3 DTN1FMD moderate Genetic Variation [403]
ABCB5 DTKVEXO Strong Altered Expression [404]
ABCC5 DTYVM24 Strong Genetic Variation [405]
ATP7A DT0LT17 Strong Biomarker [406]
SLC16A7 DTLT3UG Strong Biomarker [357]
SLC25A21 DT2UQYR Strong Biomarker [407]
SLC26A1 DTJ785O Strong Biomarker [362]
SLC2A11 DTJK135 Strong Biomarker [358]
SLC2A6 DTS4MKQ Strong Biomarker [360]
SLC2A8 DT2I7BM Strong Biomarker [358]
SLC31A2 DT8Q56F Strong Biomarker [408]
SLC35A4 DT2OPRB Strong Altered Expression [409]
SLC45A2 DTNCJAT Strong Posttranslational Modification [44]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 DTP(s)
This Disease Is Related to 15 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
ABO DESIA7R Limited Biomarker [410]
EGLN3 DEMQTKH Limited Biomarker [411]
GCLC DESYL1F Limited Altered Expression [412]
MTRR DE6NIY9 Limited Genetic Variation [413]
SAT1 DEMWO83 Limited Biomarker [414]
GLS DE3E0VT Disputed Biomarker [215]
ACP5 DESITDW Strong Biomarker [415]
CYP2C8 DES5XRU Strong Genetic Variation [416]
DIO3 DET89OV Strong Biomarker [63]
EPHX1 DELB4KP Strong Genetic Variation [60]
MGST1 DEAPJSO Strong Altered Expression [417]
MINPP1 DE5Q1SP Strong Biomarker [418]
NAT1 DE7OAB3 Strong Biomarker [419]
PCYT1A DEQYXD4 Strong Altered Expression [420]
SULT1A1 DEYWLRK Strong Genetic Variation [421]
------------------------------------------------------------------------------------
⏷ Show the Full List of 15 DME(s)
This Disease Is Related to 570 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
ADA2 OTGCV24S Limited Biomarker [422]
ADAMTS9 OTV3Q0DS Limited Biomarker [423]
AGFG1 OTI8ZKC4 Limited Biomarker [424]
ALPP OTZU4G9W Limited Biomarker [42]
ANKHD1 OTVYQ7ZL Limited Biomarker [425]
ASXL1 OTX931AW Limited Genetic Variation [274]
AZIN2 OT8OB7CG Limited Biomarker [426]
BCL2L11 OTNQQWFJ Limited Biomarker [427]
BIK OTTH1T3D Limited Genetic Variation [428]
CCDC6 OTXRQDYG Limited Biomarker [119]
CCL4 OT6B8P25 Limited Biomarker [429]
CCNA1 OTX4HD45 Limited Biomarker [430]
CD99 OTPUZ5DE Limited Altered Expression [431]
CDKN3 OTBE3H07 Limited Altered Expression [432]
CFL1 OTT6D5MH Limited Biomarker [43]
CIP2A OTVS2GXA Limited Biomarker [433]
CPT1C OT8F1MBF Limited Biomarker [434]
DCDC2 OTSUFH1H Limited Biomarker [435]
DLC1 OTP8LMCR Limited Biomarker [436]
DUSP2 OTH54FMR Limited Biomarker [40]
EEF1E1 OTRA6XOB Limited Biomarker [43]
EIF4A2 OT08H03R Limited Altered Expression [437]
EVI5 OTOPAP55 Limited Biomarker [438]
EXT1 OTRPALJK Limited Biomarker [439]
FCGR3B OTSLSPZG Limited Biomarker [440]
GADL1 OTJM4A0R Limited Biomarker [426]
GRK6 OT4LZTP9 Limited Biomarker [441]
ING1 OTEZBRKW Limited Biomarker [442]
ING4 OT0VVG4V Limited Biomarker [442]
IPP OTCGBS3H Limited Biomarker [443]
IQGAP1 OTZRWTGA Limited Altered Expression [444]
KLHL1 OTAX6SAD Limited Biomarker [163]
KMT2D OTTVHCLY Limited Biomarker [445]
LAMTOR1 OTIBJBW9 Limited Biomarker [43]
LGALS9 OT7MF91K Limited Biomarker [446]
LYST OTIUB1B3 Limited Biomarker [447]
MAF OT1GR3IZ Limited Genetic Variation [448]
MAFK OTZJUE4P Limited Biomarker [43]
MAGT1 OTQSAV5C Limited Biomarker [42]
MIB1 OT5C404P Limited Altered Expression [449]
MRE11 OTGU8TZM Limited Altered Expression [450]
MYEOV OTDC7UHL Limited Genetic Variation [451]
MZB1 OT071TET Limited Altered Expression [452]
NBEA OTYLY5TY Limited Biomarker [453]
NCR3 OT20M764 Limited Altered Expression [318]
PPP1R13L OTNCPLWE Limited Genetic Variation [454]
PRDX1 OTZ3BEC4 Limited Altered Expression [269]
PRIMA1 OT9ITT3P Limited Biomarker [455]
PSMG1 OTZ5I6UM Limited Biomarker [40]
RAD50 OTYMU9G1 Limited Altered Expression [450]
RAN OT2TER5M Limited Biomarker [456]
RAP1A OT5RH6TI Limited Biomarker [457]
RCBTB2 OTECBF4R Limited Biomarker [456]
RETN OTW5Z1NH Limited Biomarker [458]
RHOBTB2 OT2DATFX Limited Altered Expression [434]
RPL5 OTM8EBRI Limited Biomarker [438]
SAMSN1 OT7N88T1 Limited Genetic Variation [459]
SERPINA5 OTTZXPGD Limited Biomarker [460]
SETBP1 OTKGCOSR Limited Genetic Variation [461]
SFRP2 OT8GZ0CA Limited Altered Expression [462]
SLC7A4 OTAVC6QS Limited Genetic Variation [78]
SOX8 OTEJXYZM Limited Biomarker [434]
SSX2 OT2Z6RLL Limited Altered Expression [463]
STIM1 OT8CLQ1W Limited Altered Expression [464]
SYCE1L OTXU44F3 Limited Biomarker [163]
TAS2R38 OTX5MM36 Limited Biomarker [119]
TCL1B OT4CSO39 Limited Biomarker [465]
TNFRSF10D OTOSRDJT Limited Biomarker [51]
TNPO1 OT7W2CM8 Limited Biomarker [429]
TP53RK OTARRZAB Limited Biomarker [466]
TPPP2 OTI3WA6X Limited Biomarker [43]
CASC3 OTLK3K4U Disputed Biomarker [467]
DCC OT2C1SHW Disputed Genetic Variation [468]
EPS8 OTZ6ES6V Disputed Biomarker [469]
GATA1 OTX1R7O1 Disputed Altered Expression [470]
IL17RB OT0KDNSF Disputed Biomarker [471]
JUNB OTG2JXV5 Disputed Biomarker [472]
JUND OTNKACJD Disputed Biomarker [472]
LBH OT87AT1X Disputed Biomarker [473]
LIG3 OT48SKET Disputed Biomarker [474]
MICB OTS2DVDW Disputed Altered Expression [475]
MPC1 OT6DYFUO Disputed Biomarker [104]
NOG OTGRHHPG Disputed Biomarker [476]
P4HB OTTYNYPF Disputed Biomarker [477]
PPP1R1A OTGTAGCV Disputed Biomarker [478]
TRIM56 OTFGU8E3 Disputed Biomarker [479]
APEX2 OTJ22LIT moderate Biomarker [480]
APOBEC3B OTHLNI51 moderate Biomarker [481]
ARNT OTMSIEZY moderate Biomarker [482]
ARPC1A OTAEEXGQ moderate Altered Expression [483]
ARPC5 OTFNMMDL moderate Biomarker [484]
BCAR3 OTPJ17M8 moderate Altered Expression [485]
BMPR1A OTQOA4ZH moderate Biomarker [486]
BTRC OT2EZDGR moderate Altered Expression [487]
CABIN1 OT4G5CIK moderate Altered Expression [488]
CAMK2N1 OTKCR5XL moderate Biomarker [489]
CARD8 OTXXZYWU moderate Genetic Variation [490]
CARTPT OTTE4V9S moderate Genetic Variation [491]
CCL7 OTDIS99H moderate Genetic Variation [492]
CCL8 OTCTWYN8 moderate Altered Expression [493]
CD180 OTITK5E6 moderate Altered Expression [494]
CD247 OT45FGUX moderate Biomarker [491]
CD48 OT83ZNPP moderate Biomarker [495]
CHP1 OTHTXN1A moderate Biomarker [496]
CLCN5 OT9YXZSO moderate Biomarker [497]
CLEC4D OTT7X1UC moderate Altered Expression [85]
DCAF1 OT3ZDVOE moderate Biomarker [424]
DCAF15 OTWBXZ0E moderate Biomarker [471]
DIMT1 OT9J5J1C moderate Altered Expression [498]
DLD OT378CU9 moderate Altered Expression [499]
DNMBP OTMHH14H moderate Genetic Variation [500]
EMX2 OT0V8OYK moderate Biomarker [501]
ERCC3 OTVAW3P1 moderate Biomarker [502]
ERO1A OTVKOQWM moderate Biomarker [108]
EVL OTZ8ZDNY moderate Posttranslational Modification [503]
FAM72D OTCQVOXB moderate Biomarker [504]
FGA OTMIHY80 moderate Biomarker [483]
FH OTEQWU6Q moderate Altered Expression [85]
FLII OT7G9JG6 moderate Altered Expression [505]
FOXD3 OTXYV6GO moderate Biomarker [506]
GNLY OTZJKA8C moderate Biomarker [507]
GOLT1B OTC6QPW3 moderate Genetic Variation [508]
HAPLN1 OTXWR9TJ moderate Biomarker [509]
HERPUD1 OT9EROL6 moderate Biomarker [443]
HOXA1 OTMSOJ7D moderate Altered Expression [510]
HOXC10 OT5WF17M moderate Altered Expression [511]
IGLL5 OT9XQFL5 moderate Genetic Variation [512]
IKBKG OTNWJWSD moderate Biomarker [74]
IL10RA OTOX3D1D moderate Genetic Variation [134]
IL34 OTZ15VVK moderate Biomarker [513]
KIF18A OTSMBJ24 moderate Altered Expression [514]
KLF9 OTBFEJRQ moderate Genetic Variation [515]
KLRB1 OTQ2959Y moderate Biomarker [516]
KPNA2 OTU7FOE6 moderate Biomarker [517]
LAMA5 OTIIXE4M moderate Genetic Variation [518]
LIG4 OT40DNXU moderate Genetic Variation [519]
LIN28B OTVWP0FN moderate Biomarker [137]
MAFF OT9B7MX0 moderate Genetic Variation [520]
MAPK8IP2 OTDUHLN0 moderate Biomarker [521]
MAST4 OT3LOE2J moderate Altered Expression [522]
MAX OTKZ0YKM moderate Genetic Variation [523]
MCIDAS OTK1JVAH moderate Biomarker [524]
MEIS2 OTG4ADLM moderate Biomarker [102]
MPG OTAHW80B moderate Biomarker [525]
MPST OTCDPH5D moderate Biomarker [138]
MS4A4A OTWV82RP moderate Biomarker [526]
MSTO1 OT37XCNP moderate Biomarker [138]
MTA2 OTCCYIQJ moderate Biomarker [527]
MTSS1 OT5DTDO2 moderate Altered Expression [487]
NBAS OTW9IBRI moderate Biomarker [141]
NCOA1 OTLIUJQD moderate Biomarker [232]
NEIL1 OTHBU5DJ moderate Biomarker [528]
NRSN1 OT1KKXC8 moderate Biomarker [529]
NUDT1 OTZSES3W moderate Altered Expression [530]
NUP133 OTC294HE moderate Altered Expression [531]
NUPR1 OT4FU8C0 moderate Biomarker [532]
OGA OT7ZBWT1 moderate Biomarker [141]
PADI1 OT13WAQX moderate Biomarker [477]
PADI2 OTT40K94 moderate Altered Expression [533]
PCBP4 OTDLL4NB moderate Altered Expression [189]
PDIA2 OTC2WMXS moderate Biomarker [477]
PFN1 OTHTGA1H moderate Biomarker [534]
PHF19 OTF6RUCR moderate Biomarker [535]
PLXNB1 OTCA7JIT moderate Altered Expression [157]
PMEPA1 OTY8Z9UF moderate Altered Expression [536]
PSAP OTUOEKY7 moderate Biomarker [537]
PSD4 OTEFB87Z moderate Biomarker [538]
PSMA3 OT52M10V moderate Biomarker [539]
PSME3 OTSTC4YY moderate Biomarker [540]
RAPGEF5 OT53VS75 moderate Biomarker [541]
RASSF4 OT7YLOFH moderate Altered Expression [542]
RASSF5 OT6Q41I2 moderate Biomarker [215]
RBBP8 OTRHJ3GI moderate Altered Expression [543]
RBM39 OTCMPTF9 moderate Biomarker [544]
RBPMS OT1RDKR9 moderate Biomarker [545]
RCHY1 OTAE7504 moderate Biomarker [546]
RECQL OTPCH3JH moderate Biomarker [547]
RGS1 OTGXJYMG moderate Altered Expression [548]
RHOU OTERIAD4 moderate Altered Expression [549]
RHOV OTW4N3QN moderate Biomarker [496]
RPAIN OTBMXAYK moderate Biomarker [424]
SCN7A OTK05PXY moderate Biomarker [141]
SEMA5A OTUOIOJV moderate Biomarker [550]
SIGLEC1 OTNWSQA9 moderate Biomarker [551]
SKP1 OT5BPAZ4 moderate Altered Expression [487]
SMARCA5 OT5GR4Z2 moderate Altered Expression [552]
SOSTDC1 OTAKDNSM moderate Altered Expression [553]
SOX13 OTCIF6KC moderate Altered Expression [554]
SOX6 OTT0W0LE moderate Biomarker [555]
SRSF2 OTVDHO6U moderate Genetic Variation [274]
STAC3 OTPY3BGK moderate Altered Expression [556]
STUB1 OTSUYI9A moderate Biomarker [557]
TCF19 OT7NKLF9 moderate Genetic Variation [558]
TCHP OTVDMHSY moderate Genetic Variation [559]
TINAGL1 OTZZO56M moderate Biomarker [560]
TRAT1 OTMPUNPD moderate Biomarker [561]
TRIB1 OTPEO17G moderate Altered Expression [205]
TRIM25 OT35SG1R moderate Altered Expression [562]
A2ML1 OTWNUXIS Strong Altered Expression [563]
AATF OT1QOKLD Strong Biomarker [564]
ACOXL OTW680HT Strong Genetic Variation [182]
ACSBG1 OTM040MW Strong Biomarker [565]
ACTR1A OT1QAU16 Strong Biomarker [566]
ADAM23 OTVWT6JZ Strong Altered Expression [345]
ADAR OTQNOHR8 Strong Biomarker [567]
AGO2 OT4JY32Q Strong Biomarker [568]
AHSA1 OTC7AFHT Strong Biomarker [172]
ALKBH3 OTS1CD9Z Strong Biomarker [569]
AMBP OTLU8GU8 Strong Biomarker [570]
AMY1A OT6G4B8O Strong Altered Expression [314]
ANGPTL1 OTXIN6V5 Strong Biomarker [566]
ANKRD27 OT5DCXIG Strong Genetic Variation [571]
ANOS1 OTZJT4KN Strong Biomarker [445]
ANP32B OT3SQMLU Strong Biomarker [98]
APAF1 OTJWIVY0 Strong Biomarker [572]
APOBEC2 OT4CCS0Q Strong Biomarker [566]
ARFRP1 OTP1OV78 Strong Biomarker [566]
ARHGAP24 OTCQCEZS Strong Altered Expression [299]
ARMH4 OT25GBJM Strong Biomarker [573]
ARR3 OTRZ00CH Strong Biomarker [191]
ASCC2 OT3B204T Strong Biomarker [321]
ATAD1 OTJ02XFL Strong Genetic Variation [574]
ATF6 OTAFHAVI Strong Biomarker [575]
ATG5 OT4T5SMS Strong Genetic Variation [576]
ATN1 OTNZFLKY Strong Biomarker [577]
ATXN1 OTQF0HNR Strong Genetic Variation [578]
B3GAT1 OTXFP98E Strong Biomarker [579]
BAG6 OT4Z0S2U Strong Biomarker [580]
BCL10 OT47MCLI Strong Altered Expression [581]
BCL2L10 OTYXQJ3I Strong Altered Expression [582]
BCL3 OT1M5B95 Strong Altered Expression [583]
BCL9 OTRBIPR4 Strong Biomarker [584]
BCR OTCN76C1 Strong Genetic Variation [585]
BHLHA15 OTY7IER8 Strong Altered Expression [586]
BLOC1S2 OTUR3E76 Strong Biomarker [587]
BMF OT90NSLI Strong Genetic Variation [182]
BNIP3 OT4SO7J4 Strong Altered Expression [588]
CACNG4 OTE70DMK Strong Genetic Variation [571]
CACUL1 OT6P1ZVP Strong Altered Expression [589]
CANX OTYP1F6J Strong Altered Expression [590]
CASZ1 OTWJ2OR8 Strong Biomarker [591]
CBFA2T2 OTNOIB23 Strong Biomarker [592]
CBLL2 OTB4AD3V Strong Altered Expression [102]
CCDC54 OTW5WCX9 Strong Biomarker [593]
CCHCR1 OT22C116 Strong Genetic Variation [576]
CCL27 OTUZYC61 Strong Biomarker [594]
CCND2 OTDULQF9 Strong Altered Expression [595]
CCR10 OT7ZWSSD Strong Altered Expression [594]
CD1D OT3ROU4J Strong Biomarker [596]
CD226 OT4UG0KB Strong Altered Expression [597]
CD79A OTOJC8DV Strong Biomarker [598]
CD81 OTQFXNAZ Strong Biomarker [599]
CD82 OTH8MC64 Strong Biomarker [600]
CDCA7L OT1FFWKC Strong Altered Expression [601]
CDH12 OTF2HCGA Strong Genetic Variation [237]
CDK2AP2 OTR99SJ8 Strong Posttranslational Modification [602]
CDKN2D OT2TTZPZ Strong Genetic Variation [603]
CDY1 OTQVDS8D Strong Altered Expression [604]
CEP120 OT1ZMRHL Strong Genetic Variation [605]
CEP70 OTMY5KAE Strong Biomarker [606]
CFDP1 OTXY7J96 Strong Biomarker [394]
CHD1L OT7CZK7C Strong Biomarker [607]
CIAPIN1 OTWS90F9 Strong Altered Expression [608]
CIB1 OT4BVCRU Strong Altered Expression [609]
CIB3 OT97EYB9 Strong Genetic Variation [182]
CIITA OTRJNZFO Strong Altered Expression [610]
CKS1B OTNUPLUJ Strong Biomarker [331]
CLSTN1 OTQN35G2 Strong Altered Expression [611]
COL11A2 OT3BQUBH Strong Biomarker [328]
COLEC10 OTMBADGZ Strong Genetic Variation [222]
COX1 OTG3O9BN Strong Biomarker [341]
CRISPLD2 OTVSFHTL Strong Altered Expression [612]
CRTAP OT53H5U6 Strong Genetic Variation [613]
CRYBG1 OTIPDI15 Strong Posttranslational Modification [44]
CTAG1B OTIQGW6U Strong Biomarker [227]
CTAG2 OT8HISP4 Strong Altered Expression [263]
CTRL OTB6NA5O Strong Biomarker [614]
CUL4A OTTBV70J Strong Biomarker [615]
CUX1 OTU1LCNJ Strong Biomarker [321]
CXADR OT9ZP02A Strong Biomarker [191]
CYTIP OTRJ3ZC5 Strong Genetic Variation [613]
DAP OT5YLL7E Strong Posttranslational Modification [602]
DAZAP2 OTNURO9F Strong Posttranslational Modification [616]
DCLRE1C OTW3KB1I Strong Biomarker [617]
DCTN6 OTI8PIN9 Strong Posttranslational Modification [116]
DDB1 OTTR2L3Z Strong Altered Expression [618]
DDX4 OTQOV093 Strong Altered Expression [619]
DERL1 OTJUS74N Strong Genetic Variation [620]
DHX40 OTOL02QN Strong Biomarker [326]
DIS3 OT7UPHJS Strong Genetic Variation [621]
DKC1 OTX7DJR6 Strong Altered Expression [450]
DLEC1 OTMKKBUW Strong Posttranslational Modification [622]
DNAH11 OT6IYFVV Strong Genetic Variation [623]
DNER OT2GH2E5 Strong Altered Expression [102]
DTNB OTX1HKM7 Strong Genetic Variation [182]
DTX3L OTCCO2QZ Strong Biomarker [624]
DYNLL1 OTR69LHT Strong Posttranslational Modification [622]
EDIL3 OTDVVNS0 Strong Biomarker [625]
EEF1A2 OT9Z23K5 Strong Altered Expression [626]
EIF2A OTWXELQP Strong Biomarker [627]
EIF4G1 OT2CF1E6 Strong Biomarker [86]
EIF4G2 OTEO98CR Strong Biomarker [394]
ELF4 OT167PR5 Strong Biomarker [628]
ELL2 OTZJRTFM Strong Genetic Variation [520]
ENC1 OTJEUB6U Strong Altered Expression [629]
ENDOG OT5IM7B3 Strong Biomarker [630]
ETFA OTXX61VZ Strong Biomarker [631]
ETV7 OTIAADPA Strong Biomarker [632]
FBLIM1 OTFHXMON Strong Biomarker [633]
FBXO9 OTW5P5JF Strong Altered Expression [632]
FCGR2C OTNLMNYB Strong Biomarker [65]
FCRL5 OTA7VHNE Strong Biomarker [634]
FERMT3 OTFQOT3C Strong Biomarker [635]
FOXP2 OTVX6A59 Strong Biomarker [636]
FRZB OTTO3DPY Strong Altered Expression [637]
FUT1 OTODG57A Strong Biomarker [638]
FZR1 OT0WGWZS Strong Altered Expression [210]
GAB1 OTQKE6V4 Strong Biomarker [258]
GAB2 OTBFN705 Strong Biomarker [258]
GARS1 OT5B6R9Y Strong Biomarker [167]
GBP1 OTUM7RPJ Strong Biomarker [639]
GCFC2 OTC7FRXL Strong Altered Expression [640]
GDE1 OTU6FSBF Strong Altered Expression [641]
GDF1 OTZ1VRBH Strong Genetic Variation [454]
GEMIN4 OTX7402E Strong Biomarker [394]
GFER OTVK43OK Strong Altered Expression [642]
GFI1 OT9HB9H8 Strong Altered Expression [643]
GGPS1 OTVEHG28 Strong Biomarker [644]
GNA12 OT3IRZH3 Strong Biomarker [257]
GOPC OTRBGH71 Strong Biomarker [633]
GOT2 OT6XBWN0 Strong Altered Expression [645]
GPRC5C OT45AJT3 Strong Biomarker [255]
GPSM1 OTA0SJBG Strong Altered Expression [646]
GRAMD1B OTCG1GX2 Strong Genetic Variation [182]
GRAP2 OTS5NIZ3 Strong Biomarker [172]
HAS1 OTJIAG1W Strong Genetic Variation [647]
HAS2 OTTD3PAL Strong Altered Expression [648]
HES5 OTW7JEHV Strong Biomarker [649]
HES6 OTWO5SCF Strong Biomarker [649]
HLA-DOB OTKADDUB Strong Biomarker [650]
HLA-DRB5 OTUX5TWM Strong Altered Expression [651]
HLA-E OTX1CTFB Strong Biomarker [652]
HMMR OT4M0JTZ Strong Altered Expression [653]
HOMER1 OTWFD3SI Strong Biomarker [654]
HOXB7 OTC7WYU8 Strong Biomarker [655]
HPSE2 OTGEPP8V Strong Genetic Variation [574]
IDH2 OTTQA4PB Strong Altered Expression [316]
IFI27 OTI2XGIT Strong Posttranslational Modification [116]
IFI6 OTWOOAM4 Strong Biomarker [656]
IGFBP4 OT2HZRBD Strong Biomarker [657]
IKZF1 OTCW1FKL Strong Biomarker [658]
IL2RG OTRZ3OMY Strong Genetic Variation [659]
IL3 OT0CQ35N Strong Biomarker [660]
IL6R OTCQL07Z Strong Altered Expression [567]
IL6ST OT1N9C70 Strong Biomarker [343]
ILF2 OTWWVM9X Strong Biomarker [661]
INA OT1D33T4 Strong Biomarker [662]
INPPL1 OTCDAVBQ Strong Biomarker [663]
ITGB1BP1 OTVQFNGS Strong Biomarker [635]
ITPRID2 OTO3JDX5 Strong Altered Expression [611]
ITPRIP OT9YEJXS Strong Altered Expression [664]
JAG1 OT3LGT6K Strong Altered Expression [665]
JCHAIN OTR8M5TX Strong Altered Expression [666]
KCNRG OTXHYFOD Strong Biomarker [667]
KDM6A OTZM3MJJ Strong Genetic Variation [668]
KIR3DS1 OTJWIO4T Strong Biomarker [669]
KLF10 OT4F4UGS Strong Biomarker [670]
KLF2 OTIP1UFX Strong Genetic Variation [605]
KLF6 OTQY9S7F Strong Genetic Variation [671]
KREMEN1 OTGJFSAC Strong Biomarker [672]
KRT81 OTMKIK2S Strong Genetic Variation [673]
LAMTOR2 OTHEDISB Strong Posttranslational Modification [602]
LAPTM5 OT2XI2JG Strong Altered Expression [674]
LCOR OT1K7DKB Strong Genetic Variation [237]
LDLRAP1 OT6QTX7R Strong Altered Expression [445]
LGALS8 OT71LJ8T Strong Altered Expression [446]
LRPPRC OTXSK5LP Strong Biomarker [343]
LRRC31 OT7VCU13 Strong Genetic Variation [675]
LRRC34 OTSPZLKF Strong Genetic Variation [576]
LRRIQ4 OTS3806E Strong Genetic Variation [675]
LTBP3 OTME98V7 Strong Altered Expression [676]
MAFB OTH2N3T8 Strong Altered Expression [677]
MAGED4B OTO37U7W Strong Altered Expression [301]
MARCHF8 OTH7PNN2 Strong Biomarker [678]
MARCKSL1 OT13J2FM Strong Altered Expression [679]
MBD1 OTD19VO6 Strong Genetic Variation [680]
MCTS1 OT7SAOJP Strong Biomarker [357]
MED24 OTU4SJQ1 Strong Genetic Variation [237]
MIB2 OTJCC3HS Strong Biomarker [681]
MIP OTEBLU3E Strong Biomarker [682]
MKKS OTLF5T11 Strong Biomarker [445]
MLXIP OT30UNI7 Strong Biomarker [678]
MMP24 OTF8T3JM Strong Biomarker [683]
MMP25 OT3BG37V Strong Biomarker [683]
MMP28 OTHQZXM1 Strong Biomarker [683]
MPEG1 OT7DAO0F Strong Biomarker [275]
MRAS OTNCVCQW Strong Genetic Variation [684]
MRPL28 OT4LUTZU Strong Posttranslational Modification [685]
MSC OTBRPZL5 Strong Biomarker [107]
MSH3 OTD3YPVL Strong Biomarker [163]
MSX1 OT5U41ZP Strong Biomarker [686]
MTF2 OTNL1O2O Strong Biomarker [687]
MUL1 OT2JC9YR Strong Altered Expression [102]
MVP OTJGHJRB Strong Biomarker [347]
MYLIP OTL0PFGV Strong Biomarker [678]
MYNN OT61R1HP Strong Genetic Variation [675]
MYOM2 OTD2UOXW Strong Biomarker [688]
NANOS3 OTGX9IQU Strong Genetic Variation [689]
NAPSA OT6F8IAL Strong Altered Expression [690]
NCAPH2 OTSASNX6 Strong Genetic Variation [182]
NCOR2 OTY917X0 Strong Altered Expression [691]
NCR2 OT2H13BX Strong Altered Expression [318]
NDP OTGDJ4US Strong Biomarker [692]
NLRP2 OTJA81JU Strong Genetic Variation [450]
NPC1 OTRIPICX Strong Biomarker [693]
NR2F2 OTJFS67N Strong Biomarker [566]
NRG3 OTIFZ5CT Strong Biomarker [692]
NSD3 OT3677ZG Strong Genetic Variation [694]
NXT1 OT0VO6AY Strong Posttranslational Modification [685]
OAS3 OT6E5FYS Strong Biomarker [321]
OFD1 OTAZW5TK Strong Biomarker [695]
ORC4 OT3ACTST Strong Genetic Variation [696]
PAEP OTQA0NV4 Strong Biomarker [697]
PAFAH1B1 OT9T2TCJ Strong Biomarker [698]
PARP14 OTFXJAKK Strong Biomarker [699]
PASD1 OTZZWR7L Strong Biomarker [700]
PBX3 OT8WMVM4 Strong Biomarker [701]
PCDH10 OT2GIT0E Strong Biomarker [702]
PCM1 OTFM133C Strong Genetic Variation [680]
PDC OT1UUVYY Strong Genetic Variation [703]
PDCD5 OT6T2DDL Strong Altered Expression [704]
PDZK1IP1 OTWA6M5K Strong Biomarker [705]
PIGA OT51UWUR Strong Genetic Variation [706]
PIK3R2 OTZSUQK5 Strong Biomarker [592]
PITX2 OTWMXAOY Strong Biomarker [566]
PLSCR4 OT2AMYLY Strong Altered Expression [409]
PMAIP1 OTXEE550 Strong Biomarker [707]
POLDIP2 OT8SZSJ6 Strong Biomarker [172]
POT1 OTNBXJCQ Strong Biomarker [384]
POU2AF1 OTOO6WHL Strong Altered Expression [708]
POU2F2 OTPV0J0C Strong Biomarker [709]
POU5F1 OTDHHN7O Strong Biomarker [710]
PPP1R12C OT9Q86JO Strong Biomarker [592]
PPP1R13B OTC88VQO Strong Biomarker [592]
PPP1R16B OTZJFX5C Strong Genetic Variation [711]
PPT2 OTD5VJ9A Strong Genetic Variation [675]
PRB1 OTV0SYMD Strong Altered Expression [712]
PRC1 OTHD0XS0 Strong Biomarker [119]
PRDM1 OTQLSVBS Strong Altered Expression [713]
PREX1 OTUTPVA9 Strong Genetic Variation [461]
PROK1 OT8S7RUG Strong Altered Expression [714]
PSMA6 OTJ6RPX5 Strong Genetic Variation [715]
PSMB1 OTYRFBAH Strong Genetic Variation [716]
PSMB4 OTOJ9OHA Strong Biomarker [717]
PSMC6 OTG8997V Strong Biomarker [718]
PSMD14 OTJWHMZ5 Strong Biomarker [400]
PSMD2 OT6HZHN7 Strong Biomarker [394]
PSMD4 OTH1VZTM Strong Biomarker [719]
PSMD9 OT6Y5CC3 Strong Posttranslational Modification [116]
PSME2 OTYPP33T Strong Altered Expression [720]
PSORS1C1 OT9HK436 Strong Genetic Variation [675]
PSORS1C2 OTK43GE4 Strong Biomarker [675]
PTHLH OTI1JF13 Strong Altered Expression [721]
PTPRA OTZA82J1 Strong Biomarker [347]
PVR OT3N91T7 Strong Biomarker [722]
PWWP3A OTXQVL4U Strong Biomarker [723]
RAB8A OTPB54Y3 Strong Biomarker [724]
RABGEF1 OTWC3Z3R Strong Biomarker [384]
RAD23B OT0PGOG3 Strong Biomarker [725]
RAG2 OTG9UYTW Strong Biomarker [726]
RALGAPB OTY8CGA3 Strong Altered Expression [563]
RANBP2 OTFG5CVF Strong Biomarker [234]
RAPH1 OTMQXW7S Strong Biomarker [565]
RASD1 OT2BAJHK Strong Altered Expression [727]
RB1 OT9VMY7B Strong Genetic Variation [728]
RBBP5 OT12W2MK Strong Biomarker [729]
RBM45 OTWTHD77 Strong Genetic Variation [730]
RELN OTLKMW1O Strong Biomarker [731]
RFWD3 OTDUULBQ Strong Genetic Variation [576]
RHOH OT1J9SEB Strong Genetic Variation [732]
RIOX2 OT2YFPI2 Strong Altered Expression [733]
RITA1 OTUH8IPS Strong Biomarker [734]
RMC1 OT7K8MTJ Strong Altered Expression [735]
RNASE2 OT8Z4FNE Strong Altered Expression [736]
RNASEH2C OTJL9ZRN Strong Altered Expression [646]
RNF19A OTKWCV80 Strong Biomarker [172]
RNH1 OT6EC79B Strong Genetic Variation [454]
RPA1 OT76POLP Strong Altered Expression [450]
RPIA OT805SMH Strong Biomarker [362]
RPL17 OTTYMPS6 Strong Biomarker [737]
RPP14 OT4OYFSK Strong Posttranslational Modification [602]
RPS27 OTFXKY7P Strong Biomarker [275]
RPS27A OTIIGGZ2 Strong Altered Expression [738]
RPTOR OT4TQZ9F Strong Biomarker [307]
RTEL1 OTI3PJCT Strong Biomarker [585]
RTL10 OTHGB81W Strong Altered Expression [739]
RYBP OTZZ4P2Z Strong Altered Expression [740]
SART3 OTC1AM7S Strong Biomarker [321]
SCARA3 OT46I38Y Strong Biomarker [741]
SCPEP1 OT43LYEZ Strong Biomarker [228]
SELENOW OTVSKPAN Strong Biomarker [742]
SEMG1 OT6Z4BPQ Strong Altered Expression [743]
SERPINA7 OTUYVTSU Strong Biomarker [744]
SET OTGYYQJO Strong Biomarker [745]
SEZ6 OTCD8K5D Strong Genetic Variation [746]
SEZ6L OT5Z9CUA Strong Biomarker [746]
SF3B6 OTPRKS6S Strong Posttranslational Modification [602]
SFN OTLJCZ1U Strong Biomarker [44]
SFRP5 OTLCVVSH Strong Posttranslational Modification [747]
SGK3 OTQ6QO99 Strong Biomarker [748]
SGSM3 OTIB1P8A Strong Altered Expression [749]
SH3GL3 OTX6BOCN Strong Biomarker [750]
SHC3 OT305NPA Strong Genetic Variation [454]
SHISA8 OTI8Y0C1 Strong Biomarker [751]
SIM2 OT0QWHK4 Strong Biomarker [752]
SKI OT4KJ8F6 Strong Biomarker [753]
SLAMF1 OTBTT3ZQ Strong Altered Expression [754]
SLC16A4 OT1YXBKC Strong Biomarker [357]
SMAD5 OTQNSVCQ Strong Biomarker [86]
SMARCD3 OTLLG86W Strong Genetic Variation [576]
SMG1 OTTS3SXE Strong Biomarker [242]
SND1 OTT734JN Strong Biomarker [321]
SOAT1 OTB4Y5RJ Strong Biomarker [755]
SOCS2 OTBPNKJQ Strong Biomarker [756]
SORL1 OTQ8FFNS Strong Posttranslational Modification [757]
SOX11 OT4LG7LA Strong Genetic Variation [758]
SP140 OTQZHFMT Strong Genetic Variation [182]
SP3 OTYDQZ1T Strong Genetic Variation [605]
SPA17 OT8J7T7U Strong Biomarker [593]
SPANXA1 OTMK3QIS Strong Altered Expression [759]
SPATA2 OTOA45GL Strong Biomarker [737]
SPDYA OTYKC1AJ Strong Biomarker [760]
SPG7 OT8OY9ST Strong Biomarker [191]
SPRY2 OTH0CRCZ Strong Biomarker [761]
SRCAP OT82P6CN Strong Genetic Variation [576]
SRI OT4R3EAC Strong Biomarker [762]
SSX1 OTZ7NRCY Strong Biomarker [763]
SSX4 OT0E4H2D Strong Biomarker [763]
ST3GAL6 OTB17Q43 Strong Altered Expression [764]
STX4 OTQ7YUX1 Strong Biomarker [765]
SUB1 OTK71JYU Strong Posttranslational Modification [685]
SUPT20H OTTMC0LH Strong Altered Expression [409]
SYCP1 OTWFV4KA Strong Biomarker [228]
TAP2 OTWSYFI7 Strong Genetic Variation [766]
TCIM OTARUXQF Strong Genetic Variation [767]
TEAD1 OTK6971C Strong Biomarker [768]
TELO2 OT2YQ9L8 Strong Biomarker [632]
TENT5C OTOWVQ4O Strong Biomarker [769]
TERF2IP OT3M5P3G Strong Biomarker [384]
THBS2 OTXET551 Strong Biomarker [770]
TICAM2 OTK7GIJ5 Strong Posttranslational Modification [116]
TIMM8A OTDX9687 Strong Biomarker [762]
TIMP2 OT8S1RRP Strong Altered Expression [771]
TINF2 OT861N2N Strong Biomarker [384]
TJP1 OTBDCUPK Strong Biomarker [772]
TLR10 OTQ1KVJO Strong Biomarker [773]
TMED7 OTONO8E6 Strong Posttranslational Modification [116]
TNFRSF10C OTVHOL9B Strong Posttranslational Modification [774]
TNFSF8 OTDYGDJ3 Strong Altered Expression [775]
TNFSF9 OTV9L89D Strong Altered Expression [776]
TOM1 OT30QA56 Strong Genetic Variation [576]
TP73 OT0LUO47 Strong Altered Expression [299]
TRAF2 OT1MEZZN Strong Biomarker [45]
TRAF3 OT5TQBGV Strong Biomarker [777]
TRIAP1 OTEAUJXN Strong Genetic Variation [778]
TRIM63 OTUSWA74 Strong Biomarker [779]
TRRAP OT68OI2Y Strong Altered Expression [409]
TSC22D3 OT03UM03 Strong Altered Expression [780]
TTI1 OT2NQT6S Strong Biomarker [632]
TRIP13 OTFM3TI9 Definitive Biomarker [261]
------------------------------------------------------------------------------------
⏷ Show the Full List of 570 DOT(s)

References

1 Azacitidine FDA Label
2 Bexarotene FDA Label
3 Bortezomib FDA Label
4 Carfilzomib FDA Label
5 SOT101 induces NK cell cytotoxicity and potentiates antibody-dependent cell cytotoxicity and anti-tumor activity. Front Immunol. 2022 Oct 10;13:989895.
6 Cisplatin FDA Label
7 Clofarabine FDA Label
8 Cyclophosphamide FDA Label
9 Cytarabine FDA Label
10 Dasatinib FDA Label
11 Defibrotide FDA Label
12 A standard database for drug repositioning. Sci Data. 2017 Mar 14;4:170029.
13 Dexamethasone FDA Label
14 Doxorubicin FDA Label
15 Etodolac FDA Label
16 Etoposide FDA Label
17 Everolimus FDA Label
18 ClinicalTrials.gov (NCT04270409) Isatuximab in Combination With Lenalidomide and Dexamethasone in High-risk Smoldering Multiple Myeloma. U.S. National Institutes of Health.
19 Lenalidomide FDA Label
20 Leuprolide FDA Label
21 Melphalan FDA Label
22 Clinical pipeline report, company report or official report of the Pharmaceutical Research and Manufacturers of America (PhRMA)
23 Panobinostat FDA Label
24 Effectiveness of biosimilar pegfilgrastim in patients with multiple myeloma after high-dose melphalan and autologous stem cell transplantation. Ann Hematol. 2023 Jul;102(7):1915-1925.
25 Pomalidomide FDA Label
26 Prednisone FDA Label
27 Sirolimus FDA Label
28 Succinylcholine FDA Label
29 Tadalafil FDA Label
30 Thalidomide FDA Label
31 Vincristine FDA Label
32 Integrative medicine in multiple myeloma and plasma cell disorders. Complement Ther Med. 2023 May;73:102939.
33 Vorinostat FDA Label
34 Belinostat FDA Label
35 ClinicalTrials.gov (NCT03338972) Immunotherapy With BCMA CAR-T Cells in Treating Patients With BCMA Positive Relapsed or Refractory Multiple Myeloma
36 ClinicalTrials.gov (NCT03502577) BCMA-Specific CAR T-Cells Combined With a Gamma Secretase Inhibitor (LY3039478) to Treat Relapsed or Persistent Multiple Myeloma
37 ClinicalTrials.gov (NCT03710421) CS1-CAR T Therapy Following Chemotherapy in Treating Patients With Relapsed or Refractory Multiple Myeloma
38 ClinicalTrials.gov (NCT04000282) First-in-human Single Agent Study of SAR442085 in Relapsed or Refractory Multiple Myeloma. U.S. National Institutes of Health.
39 Treatment of renal failure associated with multiple myeloma and other diseases by PACAP-38.Ann N Y Acad Sci. 2006 Jul;1070:1-4. doi: 10.1196/annals.1317.093.
40 Targeting executioner procaspase-3 with the procaspase-activating compound B-PAC-1 induces apoptosis in multiple myeloma cells.Exp Hematol. 2015 Nov;43(11):951-962.e3. doi: 10.1016/j.exphem.2015.07.005. Epub 2015 Aug 6.
41 Phenotypic and genomic analysis of multiple myeloma minimal residual disease tumor cells: a new model to understand chemoresistance.Blood. 2016 Apr 14;127(15):1896-906. doi: 10.1182/blood-2015-08-665679. Epub 2016 Jan 11.
42 Increased resistance to proteasome inhibitors in multiple myeloma mediated by cIAP2--implications for a combinatorial treatment.Oncotarget. 2015 Aug 21;6(24):20621-35. doi: 10.18632/oncotarget.4139.
43 Frequent inactivation of the cyclin-dependent kinase inhibitor p18 by homozygous deletion in multiple myeloma cell lines: ectopic p18 expression inhibits growth and induces apoptosis.Leukemia. 2002 Jan;16(1):127-34. doi: 10.1038/sj.leu.2402328.
44 TGFbetaR2 aberrant methylation is a potential prognostic marker and therapeutic target in multiple myeloma.Int J Cancer. 2009 Oct 15;125(8):1985-91. doi: 10.1002/ijc.24431.
45 Classical and/or alternative NF-kappaB pathway activation in multiple myeloma.Blood. 2010 Apr 29;115(17):3541-52. doi: 10.1182/blood-2009-09-243535. Epub 2010 Jan 6.
46 The expression of BST2 in human and experimental mouse brain tumors.Exp Mol Pathol. 2011 Aug;91(1):440-6. doi: 10.1016/j.yexmp.2011.04.012. Epub 2011 May 1.
47 Gene expression profile of multiple myeloma cell line treated by realgar.J Exp Clin Cancer Res. 2006 Jun;25(2):243-9.
48 TP-064, a potent and selective small molecule inhibitor of PRMT4 for multiple myeloma.Oncotarget. 2018 Apr 6;9(26):18480-18493. doi: 10.18632/oncotarget.24883. eCollection 2018 Apr 6.
49 Control of autophagic cell death by caspase-10 in multiple myeloma.Cancer Cell. 2013 Apr 15;23(4):435-49. doi: 10.1016/j.ccr.2013.02.017. Epub 2013 Mar 28.
50 Osteolytic lesions, cytogenetic features and bone marrow levels of cytokines and chemokines in multiple myeloma patients: Role of chemokine (C-C motif) ligand 20.Leukemia. 2016 Feb;30(2):409-16. doi: 10.1038/leu.2015.259. Epub 2015 Sep 30.
51 T cells support osteoclastogenesis in an in vitro model derived from human multiple myeloma bone disease: the role of the OPG/TRAIL interaction.Blood. 2004 Dec 1;104(12):3722-30. doi: 10.1182/blood-2004-02-0474. Epub 2004 Aug 12.
52 CD52 expression patterns in myeloma and the applicability of alemtuzumab therapy.Haematologica. 2006 Nov;91(11):1577-8. Epub 2006 Oct 17.
53 Engineered anti-CD70 antibody with multiple effector functions exhibits in vitro and in vivo antitumor activities.Blood. 2007 Feb 1;109(3):1185-92. doi: 10.1182/blood-2006-07-034017. Epub 2006 Oct 12.
54 Targeting CD74 in multiple myeloma with the novel, site-specific antibody-drug conjugate STRO-001.Oncotarget. 2018 Dec 28;9(102):37700-37714. doi: 10.18632/oncotarget.26491. eCollection 2018 Dec 28.
55 CTLA4Ig-based reduced intensity conditioning and donor lymphocyte infusions for haploidentical transplantation in refractory aggressive B-cell lymphoma relapsing after an autograft: Early results from a pilot study.Exp Hematol. 2019 Sep;77:26-35.e1. doi: 10.1016/j.exphem.2019.08.002. Epub 2019 Aug 23.
56 Therapeutic targeting of N-cadherin is an effective treatment for multiple myeloma.Br J Haematol. 2015 Nov;171(3):387-99. doi: 10.1111/bjh.13596. Epub 2015 Jul 20.
57 EphA4 promotes cell proliferation and cell adhesion-mediated drug resistance via the AKT pathway in multiple myeloma.Tumour Biol. 2017 Mar;39(3):1010428317694298. doi: 10.1177/1010428317694298.
58 Mapping of chromosome 1p deletions in myeloma identifies FAM46C at 1p12 and CDKN2C at 1p32.3 as being genes in regions associated with adverse survival.Clin Cancer Res. 2011 Dec 15;17(24):7776-84. doi: 10.1158/1078-0432.CCR-11-1791. Epub 2011 Oct 12.
59 Defining the role of TORC1/2 in multiple myeloma.Blood. 2011 Dec 22;118(26):6860-70. doi: 10.1182/blood-2011-03-342394. Epub 2011 Nov 1.
60 Associations of common variants in genes involved in metabolism and response to exogenous chemicals with risk of multiple myeloma.Cancer Epidemiol. 2009 Oct;33(3-4):276-80. doi: 10.1016/j.canep.2009.08.005. Epub 2009 Sep 6.
61 CYP2C19 genotype-phenotype discordance in patients with multiple myeloma leads to an acquired loss of drug-metabolising activity.Cancer Chemother Pharmacol. 2014 Mar;73(3):651-5. doi: 10.1007/s00280-014-2409-9. Epub 2014 Feb 12.
62 Triptolide induces apoptotic cell death of multiple myeloma cells via transcriptional repression of Mcl-1.Int J Oncol. 2014 Apr;44(4):1131-8. doi: 10.3892/ijo.2014.2280. Epub 2014 Jan 27.
63 Multiple myeloma cells alter the senescence phenotype of bone marrow mesenchymal stromal cells under participation of the DLK1-DIO3 genomic region.BMC Cancer. 2015 Feb 18;15:68. doi: 10.1186/s12885-015-1078-3.
64 JAM-A as a prognostic factor and new therapeutic target in multiple myeloma.Leukemia. 2018 Mar;32(3):736-743. doi: 10.1038/leu.2017.287. Epub 2017 Sep 28.
65 C-reactive protein promotes bone destruction in human myeloma through the CD32-p38 MAPK-Twist axis.Sci Signal. 2017 Dec 12;10(509):eaan6282. doi: 10.1126/scisignal.aan6282.
66 High levels of FLT3-ligand in bone marrow and peripheral blood of patients with advanced multiple myeloma.PLoS One. 2017 Jul 20;12(7):e0181487. doi: 10.1371/journal.pone.0181487. eCollection 2017.
67 Image of the Month: Multifocal 68Ga Prostate-Specific Membrane Antigen Ligand Uptake in the Skeleton in a Man With Both Prostate Cancer and Multiple Myeloma.Clin Nucl Med. 2017 Jul;42(7):547-548. doi: 10.1097/RLU.0000000000001649.
68 Autocrine and Paracrine Interactions between Multiple Myeloma Cells and Bone Marrow Stromal Cells by Growth Arrest-specific Gene 6 Cross-talk with Interleukin-6.J Biol Chem. 2017 Mar 10;292(10):4280-4292. doi: 10.1074/jbc.M116.733030. Epub 2017 Jan 31.
69 Hypoxia-inducible factor (HIF)-1 suppression in myeloma cells blocks tumoral growth in vivo inhibiting angiogenesis and bone destruction.Leukemia. 2013 Aug;27(8):1697-706. doi: 10.1038/leu.2013.24. Epub 2013 Jan 24.
70 IL-6-induced enhancement of c-Myc translation in multiple myeloma cells: critical role of cytoplasmic localization of the rna-binding protein hnRNP A1.J Biol Chem. 2011 Jan 7;286(1):67-78. doi: 10.1074/jbc.M110.153221. Epub 2010 Oct 25.
71 Blocking IFNAR1 inhibits multiple myeloma-driven Treg expansion and immunosuppression.J Clin Invest. 2018 Jun 1;128(6):2487-2499. doi: 10.1172/JCI88169. Epub 2018 May 14.
72 IB kinase (IKBKB) mutations in lymphomas that constitutively activate canonical nuclear factor B (NFB) signaling.J Biol Chem. 2014 Sep 26;289(39):26960-26972. doi: 10.1074/jbc.M114.598763. Epub 2014 Aug 8.
73 The role of IL-21 in hematological malignancies.Cytokine. 2011 Nov;56(2):133-9. doi: 10.1016/j.cyto.2011.07.011. Epub 2011 Aug 6.
74 Genomic studies of multiple myeloma reveal an association between X chromosome alterations and genomic profile complexity.Genes Chromosomes Cancer. 2017 Jan;56(1):18-27. doi: 10.1002/gcc.22397. Epub 2016 Aug 18.
75 Thymidine phosphorylase exerts complex effects on bone resorption and formation in myeloma.Sci Transl Med. 2016 Aug 24;8(353):353ra113. doi: 10.1126/scitranslmed.aad8949.
76 Hypoxia-inducible KDM3A addiction in multiple myeloma.Blood Adv. 2018 Feb 27;2(4):323-334. doi: 10.1182/bloodadvances.2017008847.
77 Amplification and overexpression of CKS1B at chromosome band 1q21 is associated with reduced levels of p27Kip1 and an aggressive clinical course in multiple myeloma.Hematology. 2005;10 Suppl 1:117-26. doi: 10.1080/10245330512331390140.
78 Comparable gene structure of the immunoglobulin heavy chain variable region between multiple myeloma and normal bone marrow lymphocytes.Leukemia. 1996 Nov;10(11):1804-12.
79 PGC1 regulates multiple myeloma tumor growth through LDHA-mediated glycolytic metabolism.Mol Oncol. 2018 Sep;12(9):1579-1595. doi: 10.1002/1878-0261.12363. Epub 2018 Aug 14.
80 Polymorphisms of TNF-alpha and LT-alpha genes in multiple myeloma.Leuk Res. 2008 Oct;32(10):1499-504. doi: 10.1016/j.leukres.2008.03.001. Epub 2008 Apr 10.
81 Targeting MAGE-C1/CT7 expression increases cell sensitivity to the proteasome inhibitor bortezomib in multiple myeloma cell lines.PLoS One. 2011;6(11):e27707. doi: 10.1371/journal.pone.0027707. Epub 2011 Nov 16.
82 Cancer-testis antigen MAGEC2 promotes proliferation and resistance to apoptosis in Multiple Myeloma.Br J Haematol. 2015 Dec;171(5):752-62. doi: 10.1111/bjh.13762. Epub 2015 Oct 12.
83 TAK1 inhibition subverts the osteoclastogenic action of TRAIL while potentiating its antimyeloma effects.Blood Adv. 2017 Oct 26;1(24):2124-2137. doi: 10.1182/bloodadvances.2017008813. eCollection 2017 Nov 14.
84 The effect of S1P receptor signaling pathway on the survival and drug resistance in multiple myeloma cells.Mol Cell Biochem. 2017 Jan;424(1-2):185-193. doi: 10.1007/s11010-016-2854-3. Epub 2016 Oct 27.
85 Maternal embryonic leucine zipper kinase is a novel target for proliferation-associated high-risk myeloma.Haematologica. 2018 Feb;103(2):325-335. doi: 10.3324/haematol.2017.172973. Epub 2017 Nov 9.
86 Mesenchymal stem cells secretomes' affect multiple myeloma translation initiation.Cell Signal. 2016 Jun;28(6):620-30. doi: 10.1016/j.cellsig.2016.03.003. Epub 2016 Mar 11.
87 Serum miR-30d as a novel biomarker for multiple myeloma and its antitumor role in U266 cells through the targeting of the MTDH/PI3K/Akt signaling pathway.Int J Oncol. 2018 Nov;53(5):2131-2144. doi: 10.3892/ijo.2018.4532. Epub 2018 Aug 21.
88 A novel phthalimide derivative, TC11, has preclinical effects on high-risk myeloma cells and osteoclasts.PLoS One. 2015 Jan 24;10(1):e0116135. doi: 10.1371/journal.pone.0116135. eCollection 2015.
89 Epigenetic repression of miR-375 is the dominant mechanism for constitutive activation of the PDPK1/RPS6KA3 signalling axis in multiple myeloma.Br J Haematol. 2017 Aug;178(4):534-546. doi: 10.1111/bjh.14707. Epub 2017 Apr 25.
90 Polo-like kinase 2 (SNK/PLK2) is a novel epigenetically regulated gene in acute myeloid leukemia and myelodysplastic syndromes: genetic and epigenetic interactions.Ann Hematol. 2011 Sep;90(9):1037-45. doi: 10.1007/s00277-011-1193-4. Epub 2011 Feb 22.
91 Ribonucleotide Reductase Catalytic Subunit M1 (RRM1) as a Novel Therapeutic Target in Multiple Myeloma.Clin Cancer Res. 2017 Sep 1;23(17):5225-5237. doi: 10.1158/1078-0432.CCR-17-0263. Epub 2017 Apr 25.
92 Semaphorin-3A inhibits multiple myeloma progression in a mouse model.Carcinogenesis. 2018 Oct 8;39(10):1283-1291. doi: 10.1093/carcin/bgy106.
93 BSG and MCT1 Genetic Variants Influence Survival in Multiple Myeloma Patients.Genes (Basel). 2018 Apr 24;9(5):226. doi: 10.3390/genes9050226.
94 Expression and prognostic significance of Oct2 and Bob1 in multiple myeloma: implications for targeted therapeutics.Leuk Lymphoma. 2011 Apr;52(4):659-67. doi: 10.3109/10428194.2010.548535. Epub 2011 Jan 11.
95 Significant biological role of sp1 transactivation in multiple myeloma.Clin Cancer Res. 2011 Oct 15;17(20):6500-9. doi: 10.1158/1078-0432.CCR-11-1036. Epub 2011 Aug 19.
96 Recombinant human thrombopoietin improves the efficacy of intermediate-dose cyclophosphamide plus granulocyte colony-stimulating factor in mobilizing peripheral blood stem cells in patients with multiple myeloma: A cohort study.Medicine (Baltimore). 2017 Dec;96(50):e9302. doi: 10.1097/MD.0000000000009302.
97 8p21.3 deletion suggesting a probable role of TRAIL-R1 and TRAIL-R2 as candidate tumor suppressor genes in the pathogenesis of multiple myeloma.Med Oncol. 2013 Jun;30(2):489. doi: 10.1007/s12032-013-0489-8. Epub 2013 Feb 20.
98 APRIL signaling via TACI mediates immunosuppression by T regulatory cells in multiple myeloma: therapeutic implications.Leukemia. 2019 Feb;33(2):426-438. doi: 10.1038/s41375-018-0242-6. Epub 2018 Aug 22.
99 LIGHT/TNFSF14 as a New Biomarker of Bone Disease in Multiple Myeloma Patients Experiencing Therapeutic Regimens.Front Immunol. 2018 Oct 23;9:2459. doi: 10.3389/fimmu.2018.02459. eCollection 2018.
100 TrxR1 inhibition overcomes both hypoxia-induced and acquired bortezomib resistance in multiple myeloma through NF- inhibition.Cell Cycle. 2016;15(4):559-72. doi: 10.1080/15384101.2015.1136038.
101 Toll-Like Receptor 4 Activation Promotes Multiple Myeloma Cell Growth and Survival Via Suppression of The Endoplasmic Reticulum Stress Factor Chop.Sci Rep. 2019 Mar 1;9(1):3245. doi: 10.1038/s41598-019-39672-7.
102 The homeobox transcription factor MEIS2 is a regulator of cancer cell survival and IMiDs activity in Multiple Myeloma: modulation by Bromodomain and Extra-Terminal (BET) protein inhibitors.Cell Death Dis. 2019 Apr 11;10(4):324. doi: 10.1038/s41419-019-1562-9.
103 High numbers of CD163+ tumor-associated macrophages correlate with poor prognosis in multiple myeloma patients receiving bortezomib-based regimens.J Cancer. 2019 Jun 2;10(14):3239-3245. doi: 10.7150/jca.30102. eCollection 2019.
104 Clinical effects of CD33 and MPC-1 on the prognosis of multiple myeloma treated with bortezomib.Leuk Lymphoma. 2019 Sep;60(9):2152-2157. doi: 10.1080/10428194.2019.1574003. Epub 2019 Mar 19.
105 Levels of CEACAM6 in Peripheral Blood Are Elevated in Patients with Plasma Cell Disorders: A Potential New Diagnostic Marker and a New Therapeutic Target?.Dis Markers. 2019 Jan 27;2019:1806034. doi: 10.1155/2019/1806034. eCollection 2019.
106 Bone Marrow CX3CL1/Fractalkine is a New Player of the Pro-Angiogenic Microenvironment in Multiple Myeloma Patients.Cancers (Basel). 2019 Mar 6;11(3):321. doi: 10.3390/cancers11030321.
107 Mesenchymal stem cells gene signature in high-risk myeloma bone marrow linked to suppression of distinct IGFBP2-expressing small adipocytes.Br J Haematol. 2019 Feb;184(4):578-593. doi: 10.1111/bjh.15669. Epub 2018 Nov 8.
108 Inhibition of the FAD containing ER oxidoreductin 1 (Ero1) protein by EN-460 as a strategy for treatment of multiple myeloma.Bioorg Med Chem. 2019 Apr 15;27(8):1479-1488. doi: 10.1016/j.bmc.2019.02.016. Epub 2019 Feb 10.
109 Targeting MK2 Is a Novel Approach to Interfere in Multiple Myeloma.Front Oncol. 2019 Aug 8;9:722. doi: 10.3389/fonc.2019.00722. eCollection 2019.
110 Dual PAK4-NAMPT Inhibition Impacts Growth and Survival, and Increases Sensitivity to DNA-Damaging Agents in Waldenstrm Macroglobulinemia.Clin Cancer Res. 2019 Jan 1;25(1):369-377. doi: 10.1158/1078-0432.CCR-18-1776. Epub 2018 Sep 11.
111 The WNT receptor ROR2 drives the interaction of multiple myeloma cells with the microenvironment through AKT activation.Leukemia. 2020 Jan;34(1):257-270. doi: 10.1038/s41375-019-0486-9. Epub 2019 May 31.
112 Ferroportin downregulation promotes cell proliferation by modulating the Nrf2-miR-17-5p axis in multiple myeloma.Cell Death Dis. 2019 Aug 19;10(9):624. doi: 10.1038/s41419-019-1854-0.
113 The Transfer of Sphingomyelinase Contributes to Drug Resistance in Multiple Myeloma.Cancers (Basel). 2019 Nov 20;11(12):1823. doi: 10.3390/cancers11121823.
114 Chemotherapy followed by anti-CD137 mAb immunotherapy improves disease control in a mouse myeloma model.JCI Insight. 2019 Jun 13;5(14):e125932. doi: 10.1172/jci.insight.125932.
115 Analysis of determinants for in vitro resistance to the small molecule deubiquitinase inhibitor b-AP15.PLoS One. 2019 Oct 22;14(10):e0223807. doi: 10.1371/journal.pone.0223807. eCollection 2019.
116 ADP-ribosylation factor 1 (ARF1) takes part in cell proliferation and cell adhesion-mediated drug resistance (CAM-DR).Ann Hematol. 2017 May;96(5):847-858. doi: 10.1007/s00277-017-2949-2. Epub 2017 Feb 25.
117 Bone Pain Induced by Multiple Myeloma Is Reduced by Targeting V-ATPase and ASIC3.Cancer Res. 2017 Mar 15;77(6):1283-1295. doi: 10.1158/0008-5472.CAN-15-3545. Epub 2017 Mar 2.
118 STK405759 as a combination therapy with bortezomib or dexamethasone, in in vitro and in vivo multiple myeloma models.Oncotarget. 2018 Jul 31;9(59):31367-31379. doi: 10.18632/oncotarget.25825. eCollection 2018 Jul 31.
119 The polycomb group protein BMI-1 inhibitor PTC-209 is a potent anti-myeloma agent alone or in combination with epigenetic inhibitors targeting EZH2 and the BET bromodomains.Oncotarget. 2017 Oct 20;8(61):103731-103743. doi: 10.18632/oncotarget.21909. eCollection 2017 Nov 28.
120 The Covalent CDK7 Inhibitor THZ1 Potently Induces Apoptosis in Multiple Myeloma Cells In Vitro and In Vivo.Clin Cancer Res. 2019 Oct 15;25(20):6195-6205. doi: 10.1158/1078-0432.CCR-18-3788. Epub 2019 Jul 29.
121 Characterizing the Tumor Suppressor Role of CEACAM1 in Multiple Myeloma.Cell Physiol Biochem. 2018;45(4):1631-1640. doi: 10.1159/000487730. Epub 2018 Feb 21.
122 Citron Rho-interacting kinase silencing causes cytokinesis failure and reduces tumor growth in multiple myeloma.Blood Adv. 2019 Apr 9;3(7):995-1002. doi: 10.1182/bloodadvances.2018028456.
123 DOT1L inhibition blocks multiple myeloma cell proliferation by suppressing IRF4-MYC signaling.Haematologica. 2019 Jan;104(1):155-165. doi: 10.3324/haematol.2018.191262. Epub 2018 Aug 31.
124 DPP8 is a novel therapeutic target for multiple myeloma.Sci Rep. 2019 Dec 2;9(1):18094. doi: 10.1038/s41598-019-54695-w.
125 DUSP facilitates RPMI8226 myeloma cell aging and inhibited TLR4 expression.Eur Rev Med Pharmacol Sci. 2018 Sep;22(18):6030-6034. doi: 10.26355/eurrev_201809_15939.
126 Inhibition of dual-specificity tyrosine phosphorylation-regulated kinase 2 perturbs 26S proteasome-addicted neoplastic progression.Proc Natl Acad Sci U S A. 2019 Dec 3;116(49):24881-24891. doi: 10.1073/pnas.1912033116. Epub 2019 Nov 21.
127 A Minimal Physiologically-Based Pharmacokinetic Model Demonstrates Role of the Neonatal Fc Receptor (FcRn) Competition in Drug-Disease Interactions With Antibody Therapy.Clin Pharmacol Ther. 2020 Feb;107(2):423-434. doi: 10.1002/cpt.1619. Epub 2019 Sep 25.
128 Expression of functional folate receptors in multiple myeloma.Leuk Lymphoma. 2018 Dec;59(12):2982-2989. doi: 10.1080/10428194.2018.1453066. Epub 2018 Apr 4.
129 MMSET I acts as an oncoprotein and regulates GLO1 expression in t(4;14) multiple myeloma cells.Leukemia. 2019 Mar;33(3):739-748. doi: 10.1038/s41375-018-0300-0. Epub 2018 Nov 23.
130 LINC01234 promotes multiple myeloma progression by regulating miR-124-3p/GRB2 axis.Am J Transl Res. 2019 Oct 15;11(10):6600-6618. eCollection 2019.
131 Emerging drug development technologies targeting ubiquitination for cancer therapeutics.Pharmacol Ther. 2019 Jul;199:139-154. doi: 10.1016/j.pharmthera.2019.03.003. Epub 2019 Mar 7.
132 Long Non-Coding RNA MEG3 Functions as a Competing Endogenous RNA to Regulate HOXA11 Expression by Sponging miR-181a in Multiple Myeloma.Cell Physiol Biochem. 2018;49(1):87-100. doi: 10.1159/000492846. Epub 2018 Aug 22.
133 Serum and urinary levels of CD222 in cancer: origin and diagnostic value.Neoplasma. 2018 Sep 19;65(5):762-768. doi: 10.4149/neo_2018_171203N792. Epub 2018 Jun 18.
134 Polymorphism of IL-10 receptor affects the prognosis of multiple myeloma patients treated with thalidomide and/or bortezomib.Hematol Oncol. 2017 Dec;35(4):711-718. doi: 10.1002/hon.2322. Epub 2016 Jul 13.
135 Targeting tryptophan catabolic kynurenine pathway enhances antitumor immunity and cytotoxicity in multiple myeloma.Leukemia. 2020 Feb;34(2):567-577. doi: 10.1038/s41375-019-0558-x. Epub 2019 Aug 28.
136 Daratumumab augments alloreactive natural killer cell cytotoxicity towards CD38+ multiple myeloma cell lines in a biochemical context mimicking tumour microenvironment conditions.Cancer Immunol Immunother. 2018 Jun;67(6):861-872. doi: 10.1007/s00262-018-2140-1. Epub 2018 Mar 2.
137 The LIN28B/let-7 axis is a novel therapeutic pathway in multiple myeloma.Leukemia. 2017 Apr;31(4):853-860. doi: 10.1038/leu.2016.296. Epub 2016 Oct 24.
138 Telomerase inhibitor MST-312 induces apoptosis of multiple myeloma cells and down-regulation of anti-apoptotic, proliferative and inflammatory genes.Life Sci. 2019 Jul 1;228:66-71. doi: 10.1016/j.lfs.2019.04.060. Epub 2019 Apr 25.
139 Kinase domain activation through gene rearrangement in multiple myeloma.Leukemia. 2018 Nov;32(11):2435-2444. doi: 10.1038/s41375-018-0108-y. Epub 2018 Mar 23.
140 Designing new generation of potent inhibitors against membrane-type matrix metalloproteinase-2: a computational effort against multiple myeloma.J Biomol Struct Dyn. 2020 Aug;38(13):3879-3891. doi: 10.1080/07391102.2019.1670736. Epub 2019 Oct 16.
141 Urinary NGAL for the diagnosis of the renal injury from multiple myeloma.Cancer Biomark. 2017;18(1):41-46. doi: 10.3233/CBM-160672.
142 The NEDD4-1 E3 ubiquitin ligase: A potential molecular target for bortezomib sensitivity in multiple myeloma.Int J Cancer. 2020 Apr 1;146(7):1963-1978. doi: 10.1002/ijc.32615. Epub 2019 Aug 24.
143 Prospective Study of Cardiac Events During Proteasome Inhibitor Therapy for Relapsed Multiple Myeloma.J Clin Oncol. 2019 Aug 1;37(22):1946-1955. doi: 10.1200/JCO.19.00231. Epub 2019 Jun 12.
144 Trabectedin triggers direct and NK-mediated cytotoxicity in multiple myeloma.J Hematol Oncol. 2019 Mar 21;12(1):32. doi: 10.1186/s13045-019-0714-9.
145 Comparison of minimal residual disease detection in multiple myeloma by SRL 8-color single-tube and EuroFlow 8-color 2-tube multiparameter flow cytometry.Int J Hematol. 2019 Apr;109(4):377-381. doi: 10.1007/s12185-019-02615-z. Epub 2019 Feb 18.
146 Novel Strategies for Peptide-Based Vaccines in Hematological Malignancies.Front Immunol. 2018 Oct 1;9:2264. doi: 10.3389/fimmu.2018.02264. eCollection 2018.
147 The synergistic effect of PFK15 with metformin exerts anti-myeloma activity via PFKFB3.Biochem Biophys Res Commun. 2019 Jul 23;515(2):332-338. doi: 10.1016/j.bbrc.2019.05.136. Epub 2019 May 29.
148 Identification of PIKfyve kinase as a target in multiple myeloma.Haematologica. 2020 Jun;105(6):1641-1649. doi: 10.3324/haematol.2019.222729. Epub 2019 Oct 3.
149 HDAC Inhibitors Exert Anti-Myeloma Effects through Multiple Modes of Action.Cancers (Basel). 2019 Apr 4;11(4):475. doi: 10.3390/cancers11040475.
150 Protein arginine methyltransferase 5 has prognostic relevance and is a druggable target in multiple myeloma.Leukemia. 2018 Apr;32(4):996-1002. doi: 10.1038/leu.2017.334. Epub 2017 Nov 21.
151 Spectrum and functional validation of PSMB5 mutations in multiple myeloma.Leukemia. 2019 Feb;33(2):447-456. doi: 10.1038/s41375-018-0216-8. Epub 2018 Jul 19.
152 Role of RACK1 on cell proliferation, adhesion, and bortezomib-induced apoptosis in multiple myeloma.Int J Biol Macromol. 2019 Jan;121:1077-1085. doi: 10.1016/j.ijbiomac.2018.10.034. Epub 2018 Oct 10.
153 Inhibition of mTOR complex 2 restrains tumor angiogenesis in multiple myeloma.Oncotarget. 2018 Apr 17;9(29):20563-20577. doi: 10.18632/oncotarget.25003. eCollection 2018 Apr 17.
154 RNF6 promotes myeloma cell proliferation and survival by inducing glucocorticoid receptor polyubiquitination.Acta Pharmacol Sin. 2020 Mar;41(3):394-403. doi: 10.1038/s41401-019-0309-6. Epub 2019 Oct 23.
155 Silencing RRM2 inhibits multiple myeloma bytargeting the Wnt/catenin signaling pathway.Mol Med Rep. 2019 Sep;20(3):2159-2166. doi: 10.3892/mmr.2019.10465. Epub 2019 Jul 3.
156 Treatment of Multiple Myeloma: ASCO and CCO Joint Clinical Practice Guideline.J Clin Oncol. 2019 May 10;37(14):1228-1263. doi: 10.1200/JCO.18.02096. Epub 2019 Apr 1.
157 Semaphorin 4D correlates with increased bone resorption, hypercalcemia, and disease stage in newly diagnosed patients with multiple myeloma.Blood Cancer J. 2018 May 11;8(5):42. doi: 10.1038/s41408-018-0075-6.
158 Expression of TRPM8 in human reactive lymphoid tissues and mature B-cell neoplasms.Oncol Lett. 2018 Nov;16(5):5930-5938. doi: 10.3892/ol.2018.9386. Epub 2018 Sep 3.
159 Design, synthesis, and biological evaluation of novel ubiquitin-activating enzyme inhibitors.Bioorg Med Chem Lett. 2018 Sep 1;28(16):2723-2727. doi: 10.1016/j.bmcl.2018.03.004. Epub 2018 Mar 3.
160 High expression of UBE2T predicts poor prognosis and survival in multiple myeloma.Cancer Gene Ther. 2019 Nov;26(11-12):347-355. doi: 10.1038/s41417-018-0070-x. Epub 2019 Jan 9.
161 Blockade of Deubiquitylating Enzyme USP1 Inhibits DNA Repair and Triggers Apoptosis in Multiple Myeloma Cells.Clin Cancer Res. 2017 Aug 1;23(15):4280-4289. doi: 10.1158/1078-0432.CCR-16-2692. Epub 2017 Mar 7.
162 Multidrug resistance gene expression and ABCB1 SNPs in plasma cell myeloma.Leuk Res. 2011 Nov;35(11):1457-63. doi: 10.1016/j.leukres.2011.05.033. Epub 2011 Jun 25.
163 A p110-specific inhibitor combined with bortezomib blocks drug resistance properties of EBV-related B cell origin cancer cells via regulation of NF-B.Int J Oncol. 2017 May;50(5):1711-1720. doi: 10.3892/ijo.2017.3923. Epub 2017 Mar 21.
164 Inherited variation in the xenobiotic transporter pathway and survival of multiple myeloma patients.Br J Haematol. 2018 Nov;183(3):375-384. doi: 10.1111/bjh.15521. Epub 2018 Aug 6.
165 The PI3K/AKT signaling pathway regulates ABCG2 expression and confers resistance to chemotherapy in human multiple myeloma.Oncol Rep. 2019 Mar;41(3):1678-1690. doi: 10.3892/or.2019.6968. Epub 2019 Jan 11.
166 Detection of a rare BCR-ABL tyrosine kinase fusion protein in H929 multiple myeloma cells using immunoprecipitation (IP)-tandem mass spectrometry (MS/MS).Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16190-5. doi: 10.1073/pnas.1212759109. Epub 2012 Sep 17.
167 Utilizing BMP-2 muteins for treatment of multiple myeloma.PLoS One. 2017 May 10;12(5):e0174884. doi: 10.1371/journal.pone.0174884. eCollection 2017.
168 PEGylated long-circulating liposomes deliver homoharringtonine to suppress multiple myeloma cancer stem cells.Exp Biol Med (Maywood). 2017 May;242(9):996-1004. doi: 10.1177/1535370216685008. Epub 2017 Jan 1.
169 Identification of a nucleoside analog active against adenosine kinase-expressing plasma cell malignancies.J Clin Invest. 2017 Jun 1;127(6):2066-2080. doi: 10.1172/JCI83936. Epub 2017 May 15.
170 Polycomb target genes are silenced in multiple myeloma.PLoS One. 2010 Jul 9;5(7):e11483. doi: 10.1371/journal.pone.0011483.
171 Genetic polymorphisms in genes of class switch recombination and multiple myeloma risk and survival: an IMMEnSE study.Leuk Lymphoma. 2019 Jul;60(7):1803-1811. doi: 10.1080/10428194.2018.1551536. Epub 2019 Jan 11.
172 Rafoxanide, an organohalogen drug, triggers apoptosis and cell cycle arrest in multiple myeloma by enhancing DNA damage responses and suppressing the p38 MAPK pathway.Cancer Lett. 2019 Mar 1;444:45-59. doi: 10.1016/j.canlet.2018.12.014. Epub 2018 Dec 21.
173 Elevated serum angiogenin in multiple myeloma.Hematol J. 2003;4(6):454-5. doi: 10.1038/sj.thj.6200331.
174 Angiopoietins as biomarker of disease activity and response to therapy in multiple myeloma.Leuk Lymphoma. 2013 Jul;54(7):1473-8. doi: 10.3109/10428194.2012.745523. Epub 2012 Nov 26.
175 Screening and characterization of an Annexin A2 binding aptamer that inhibits the proliferation of myeloma cells.Biochimie. 2018 Aug;151:150-158. doi: 10.1016/j.biochi.2018.06.003. Epub 2018 Jun 15.
176 Annexin II interactions with the annexin II receptor enhance multiple myeloma cell adhesion and growth in the bone marrow microenvironment.Blood. 2012 Feb 23;119(8):1888-96. doi: 10.1182/blood-2011-11-393348. Epub 2012 Jan 5.
177 EPA and DHA have selective toxicity for PBMCs from multiple myeloma patients in a partly caspase-dependent manner.Clin Nutr. 2020 Jul;39(7):2137-2143. doi: 10.1016/j.clnu.2019.08.031. Epub 2019 Sep 9.
178 Multiple myeloma-derived exosomes inhibit osteoblastic differentiation and improve IL-6 secretion of BMSCs from multiple myeloma.J Investig Med. 2020 Jan;68(1):45-51. doi: 10.1136/jim-2019-001010. Epub 2019 Nov 28.
179 Multiple myeloma-derived exosomes are enriched of amphiregulin (AREG) and activate the epidermal growth factor pathway in the bone microenvironment leading to osteoclastogenesis.J Hematol Oncol. 2019 Jan 8;12(1):2. doi: 10.1186/s13045-018-0689-y.
180 Epigenetic silencing of miR-137 induces drug resistance and chromosomal instability by targeting AURKA in multiple myeloma.Leukemia. 2017 May;31(5):1123-1135. doi: 10.1038/leu.2016.325. Epub 2016 Nov 18.
181 Serum platelet factor 4 is a promising predictor in newly diagnosed patients with multiple myeloma treated with thalidomide and VAD regimens.Hematology. 2019 Dec;24(1):387-391. doi: 10.1080/16078454.2019.1592826.
182 Genome-wide association analysis of chronic lymphocytic leukaemia, Hodgkin lymphoma and multiple myeloma identifies pleiotropic risk loci.Sci Rep. 2017 Jan 23;7:41071. doi: 10.1038/srep41071.
183 Preclinical evaluation of the simultaneous inhibition of MCL-1 and BCL-2 with the combination of S63845 and venetoclax in multiple myeloma.Haematologica. 2020 Mar;105(3):e116-e120. doi: 10.3324/haematol.2018.212308. Epub 2019 Jul 18.
184 Transcriptome analysis reveals molecular profiles associated with evolving steps of monoclonal gammopathies.Haematologica. 2014 Aug;99(8):1365-72. doi: 10.3324/haematol.2013.087809. Epub 2014 May 9.
185 Interferon is a strong, STAT1-dependent direct inducer of BCL6 expression in multiple myeloma cells.Biochem Biophys Res Commun. 2018 Apr 6;498(3):502-508. doi: 10.1016/j.bbrc.2018.03.010. Epub 2018 Mar 3.
186 LncRNA PRAL is closely related to clinical prognosis of multiple myeloma and the bortezomib sensitivity.Exp Cell Res. 2018 Sep 15;370(2):254-263. doi: 10.1016/j.yexcr.2018.06.026. Epub 2018 Jun 23.
187 Hyaluronan hydrogels delivering BMP-6 for local targeting of malignant plasma cells and osteogenic differentiation of mesenchymal stromal cells.Acta Biomater. 2019 Sep 15;96:258-270. doi: 10.1016/j.actbio.2019.07.018. Epub 2019 Jul 11.
188 Long Noncoding RNA H19 Promotes Tumorigenesis of Multiple Myeloma by Activating BRD4 Signaling by Targeting MicroRNA 152-3p.Mol Cell Biol. 2020 Jan 16;40(3):e00382-19. doi: 10.1128/MCB.00382-19. Print 2020 Jan 16.
189 Identification of lenalidomide resistance pathways in myeloma and targeted resensitization using cereblon replacement, inhibition of STAT3 or targeting of IRF4.Blood Cancer J. 2019 Feb 11;9(2):19. doi: 10.1038/s41408-019-0173-0.
190 Prognostic impact of cytogenetic and interphase fluorescence in situ hybridization-defined chromosome 13 deletion in multiple myeloma: early results of total therapy II.Br J Haematol. 2003 Jan;120(1):44-52. doi: 10.1046/j.1365-2141.2003.03948.x.
191 Chimeric antigen receptor T cell immunotherapy for multiple myeloma: A review of current data and potential clinical applications.Am J Hematol. 2019 May;94(S1):S28-S33. doi: 10.1002/ajh.25428. Epub 2019 Feb 25.
192 CCL2 promotes macrophages-associated chemoresistance via MCPIP1 dual catalytic activities in multiple myeloma.Cell Death Dis. 2019 Oct 14;10(10):781. doi: 10.1038/s41419-019-2012-4.
193 CCN1 stimulated the osteoblasts via PTEN/AKT/GSK3/cyclinD1 signal pathway in Myeloma Bone Disease.Cancer Med. 2020 Jan;9(2):737-744. doi: 10.1002/cam4.2608. Epub 2019 Nov 26.
194 Improved diagnostic segregation of mantle cell lymphoma by determination of cyclin D1/D3 expression ratio in formalin-fixed tissue.Diagn Mol Pathol. 2009 Sep;18(3):150-5. doi: 10.1097/PDM.0b013e31818935d2.
195 HIF-2 Promotes Dissemination of Plasma Cells in Multiple Myeloma by Regulating CXCL12/CXCR4 and CCR1.Cancer Res. 2017 Oct 15;77(20):5452-5463. doi: 10.1158/0008-5472.CAN-17-0115. Epub 2017 Aug 30.
196 Autologous Hematopoietic Stem Cells Are a Preferred Source to Generate Dendritic Cells for Immunotherapy in Multiple Myeloma Patients.Front Immunol. 2019 May 21;10:1079. doi: 10.3389/fimmu.2019.01079. eCollection 2019.
197 Phase I study of samalizumab in chronic lymphocytic leukemia and multiple myeloma: blockade of the immune checkpoint CD200.J Immunother Cancer. 2019 Aug 23;7(1):227. doi: 10.1186/s40425-019-0710-1.
198 Flow cytometric detection of aneuploid CD38(++) plasmacells and CD19(+) B-lymphocytes in bone marrow, peripheral blood and PBSC harvest in multiple myeloma patients.Leuk Res. 2004 May;28(5):469-77. doi: 10.1016/j.leukres.2003.09.015.
199 The role of CD24 in multiple myeloma tumorigenicity and effects of the microenvironment on its expression.Oncotarget. 2019 Sep 10;10(52):5480-5491. doi: 10.18632/oncotarget.27190. eCollection 2019 Sep 10.
200 Potential therapeutic targets in plasma cell disorders: A flow cytometry study.Cytometry B Clin Cytom. 2017 Mar;92(2):145-152. doi: 10.1002/cyto.b.21351. Epub 2016 Feb 3.
201 LncRNA NEAT1 sponges miR-214 to regulate M2 macrophage polarization by regulation of B7-H3 in multiple myeloma.Mol Immunol. 2020 Jan;117:20-28. doi: 10.1016/j.molimm.2019.10.026. Epub 2019 Nov 12.
202 CD56 Expression Is an Important Prognostic Factor in Multiple Myeloma Even with Bortezomib Induction.Acta Haematol. 2018;139(4):228-234. doi: 10.1159/000489483. Epub 2018 Jun 19.
203 CD40 stimulation induces vincristine resistance via AKT activation and MRP1 expression in a human multiple myeloma cell line.Immunol Lett. 2012 May 30;144(1-2):41-8. doi: 10.1016/j.imlet.2012.03.005. Epub 2012 Mar 14.
204 Autologous bone marrow Th cells can support multiple myeloma cell proliferation in vitro and in xenografted mice.Leukemia. 2017 Oct;31(10):2114-2121. doi: 10.1038/leu.2017.69. Epub 2017 Feb 24.
205 JAK1/2 pathway inhibition suppresses M2 polarization and overcomes resistance of myeloma to lenalidomide by reducing TRIB1, MUC1, CD44, CXCL12, and CXCR4 expression.Br J Haematol. 2020 Jan;188(2):283-294. doi: 10.1111/bjh.16158. Epub 2019 Aug 18.
206 Blocking "don't eat me" signal of CD47-SIRP in hematological malignancies, an in-depth review.Blood Rev. 2018 Nov;32(6):480-489. doi: 10.1016/j.blre.2018.04.005. Epub 2018 Apr 14.
207 Harnessing a catalytic lysine residue for the one-step preparation of homogeneous antibody-drug conjugates.Nat Commun. 2017 Oct 24;8(1):1112. doi: 10.1038/s41467-017-01257-1.
208 Bone marrow eosinophils in plasma cell disorders.Exp Hematol. 2018 Oct;66:27-31.e5. doi: 10.1016/j.exphem.2018.06.288. Epub 2018 Jul 5.
209 Detection of Kaposi's sarcoma herpesvirus DNA sequences in multiple myeloma bone marrow stromal cells.Blood. 1999 Mar 1;93(5):1482-6.
210 Identification of the APC/C co-factor FZR1 as a novel therapeutic target for multiple myeloma.Oncotarget. 2016 Oct 25;7(43):70481-70493. doi: 10.18632/oncotarget.12026.
211 A novel small molecule inhibitor of deubiquitylating enzyme USP14 and UCHL5 induces apoptosis in multiple myeloma and overcomes bortezomib resistance.Blood. 2014 Jan 30;123(5):706-16. doi: 10.1182/blood-2013-05-500033. Epub 2013 Dec 6.
212 Cyclin D1 overexpression is not a specific grouping marker, but may collaborate with CDC37 in myeloma cells.Int J Oncol. 2004 Sep;25(3):579-95.
213 Using Prognosis-Related Gene Expression Signature and Connectivity Map for Personalized Drug Repositioning in Multiple Myeloma.Med Sci Monit. 2019 May 2;25:3247-3255. doi: 10.12659/MSM.913970.
214 Antitumoral effect of arsenic compound, sodium metaarsenite (KML001), on multiple myeloma cells.Int J Oncol. 2017 Dec;51(6):1739-1746. doi: 10.3892/ijo.2017.4161. Epub 2017 Oct 16.
215 Targeting glutaminase1 and synergizing with clinical drugs achieved more promising antitumor activity on multiple myeloma.Oncotarget. 2019 Oct 15;10(57):5993-6005. doi: 10.18632/oncotarget.27243. eCollection 2019 Oct 15.
216 MicroRNA-26a inhibits multiple myeloma cell growth by suppressing cyclin-dependent kinase 6 expression.Kaohsiung J Med Sci. 2019 May;35(5):277-283. doi: 10.1002/kjm2.12057. Epub 2019 Mar 21.
217 Ubiquitin-activating enzyme inhibition induces an unfolded protein response and overcomes drug resistance in myeloma.Blood. 2019 Apr 4;133(14):1572-1584. doi: 10.1182/blood-2018-06-859686. Epub 2019 Feb 8.
218 IL-6-induced activation of MYC is responsible for the down-regulation of CD33 expression in CD33+ myeloma cells.Int J Hematol. 2009 Apr;89(3):310-318. doi: 10.1007/s12185-009-0256-y. Epub 2009 Mar 4.
219 Rocaglamide breaks TRAIL-resistance in human multiple myeloma and acute T-cell leukemia invivo in a mouse xenogtraft model.Cancer Lett. 2017 Mar 28;389:70-77. doi: 10.1016/j.canlet.2016.12.010. Epub 2016 Dec 18.
220 Reactive oxygen species- and DNA damage response-dependent NK cell activating ligand upregulation occurs at transcriptional levels and requires the transcriptional factor E2F1.J Immunol. 2014 Jul 15;193(2):950-60. doi: 10.4049/jimmunol.1400271. Epub 2014 Jun 9.
221 The IKK inhibitor Bay 11-7082 induces cell death independent from inhibition of activation of NFB transcription factors.PLoS One. 2013;8(3):e59292. doi: 10.1371/journal.pone.0059292. Epub 2013 Mar 20.
222 MYD88 L265P in Waldenstrm macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction.Blood. 2013 Mar 14;121(11):2051-8. doi: 10.1182/blood-2012-09-454355. Epub 2013 Jan 15.
223 The human natural killer cytotoxic cell line NK-92, once armed with a murine CD16 receptor, represents a convenient cellular tool for the screening of mouse mAbs according to their ADCC potential.MAbs. 2013 Jul-Aug;5(4):587-94. doi: 10.4161/mabs.25077. Epub 2013 May 29.
224 A Novel Therapeutic Induces DEPTOR Degradation in Multiple Myeloma Cells with Resulting Tumor Cytotoxicity.Mol Cancer Ther. 2019 Oct;18(10):1822-1831. doi: 10.1158/1535-7163.MCT-19-0115. Epub 2019 Aug 8.
225 Adenoviral-mediated transfer of human wild-type p53, GM-CSF and B7-1 genes results in growth suppression and autologous anti-tumor cytotoxicity of multiple myeloma cells in vitro.Cancer Immunol Immunother. 2006 Apr;55(4):375-85. doi: 10.1007/s00262-005-0011-z. Epub 2005 Jul 2.
226 CSNK11 mediates malignant plasma cell survival.Leukemia. 2015 Feb;29(2):474-82. doi: 10.1038/leu.2014.202. Epub 2014 Jun 25.
227 Decreasing New York esophageal squamous cell carcinoma 1 expression inhibits multiple myeloma growth and osteolytic lesions.J Cell Physiol. 2020 Mar;235(3):2183-2194. doi: 10.1002/jcp.29128. Epub 2019 Sep 5.
228 Expression of testicular genes in haematological malignancies.Br J Cancer. 1999 Dec;81(7):1162-4. doi: 10.1038/sj.bjc.6690824.
229 Bone marrow endothelial cells in multiple myeloma secrete CXC-chemokines that mediate interactions with plasma cells.Br J Haematol. 2005 Apr;129(2):248-56. doi: 10.1111/j.1365-2141.2005.05443.x.
230 Targeting of CXCR3 improves anti-myeloma efficacy of adoptively transferred activated natural killer cells.J Immunother Cancer. 2019 Nov 7;7(1):290. doi: 10.1186/s40425-019-0751-5.
231 A Phase Ib/II Trial of the First-in-Class Anti-CXCR4 Antibody Ulocuplumab in Combination with Lenalidomide or Bortezomib Plus Dexamethasone in Relapsed Multiple Myeloma.Clin Cancer Res. 2020 Jan 15;26(2):344-353. doi: 10.1158/1078-0432.CCR-19-0647. Epub 2019 Oct 31.
232 NCOA1 is a novel susceptibility gene for multiple myeloma in the Chinese population: A case-control study.PLoS One. 2017 Mar 6;12(3):e0173298. doi: 10.1371/journal.pone.0173298. eCollection 2017.
233 MLN4924, an NAE inhibitor, suppresses AKT and mTOR signaling via upregulation of REDD1 in human myeloma cells.Blood. 2014 May 22;123(21):3269-76. doi: 10.1182/blood-2013-08-521914. Epub 2014 Apr 8.
234 SAGE analysis highlights the importance of p53csv, ddx5, mapkapk2 and ranbp2 to multiple myeloma tumorigenesis.Cancer Lett. 2009 Jun 8;278(1):41-8. doi: 10.1016/j.canlet.2008.12.022. Epub 2009 Jan 25.
235 DEK protein level is a biomarker of CD138positive normal and malignant plasma cells.PLoS One. 2017 May 30;12(5):e0178025. doi: 10.1371/journal.pone.0178025. eCollection 2017.
236 Inhibition of DEPDC1A, a bad prognostic marker in multiple myeloma, delays growth and induces mature plasma cell markers in malignant plasma cells.PLoS One. 2013 Apr 30;8(4):e62752. doi: 10.1371/journal.pone.0062752. Print 2013.
237 The CCND1 c.870G>A polymorphism is a risk factor for t(11;14)(q13;q32) multiple myeloma.Nat Genet. 2013 May;45(5):522-525. doi: 10.1038/ng.2583. Epub 2013 Mar 17.
238 Down-regulation of PU.1 by methylation of distal regulatory elements and the promoter is required for myeloma cell growth. Cancer Res. 2007 Jun 1;67(11):5328-36. doi: 10.1158/0008-5472.CAN-06-4265.
239 CD26 is a potential therapeutic target by humanized monoclonal antibody for the treatment of multiple myeloma.Blood Cancer J. 2018 Oct 22;8(11):99. doi: 10.1038/s41408-018-0127-y.
240 No preferential use of the VH(V) family in human multiple myeloma.Br J Haematol. 1989 Dec;73(4):486-90. doi: 10.1111/j.1365-2141.1989.tb00285.x.
241 The prolyl-hydroxylase EGLN3 and not EGLN1 is inactivated by methylation in plasma cell neoplasia.Eur J Haematol. 2010 Jan 1;84(1):47-51. doi: 10.1111/j.1600-0609.2009.01344.x. Epub 2009 Sep 8.
242 Targeting proliferating cell nuclear antigen and its protein interactions induces apoptosis in multiple myeloma cells. PLoS One. 2013 Jul 31;8(7):e70430.
243 Epha3 acts as proangiogenic factor in multiple myeloma.Oncotarget. 2017 May 23;8(21):34298-34309. doi: 10.18632/oncotarget.16100.
244 Dual inhibition of enhancer of zeste homolog 1/2 overactivates WNT signaling to deplete cancer stem cells in multiple myeloma.Cancer Sci. 2019 Jan;110(1):194-208. doi: 10.1111/cas.13840. Epub 2018 Nov 16.
245 Indirect Tumor Inhibitory Effects of MicroRNA-124 through Targeting EZH2 in The Multiple Myeloma Cell Line.Cell J. 2020 Apr;22(1):23-29. doi: 10.22074/cellj.2020.6492. Epub 2019 Sep 8.
246 Interactions of human mesangial cells with IgA and IgA-containing immune complexes.Kidney Int. 2002 Aug;62(2):465-75. doi: 10.1046/j.1523-1755.2002.00477.x.
247 Clinicopathologic analysis of the impact of CD23 expression in plasma cell myeloma with t(11;14)(q13;q32).Ann Diagn Pathol. 2011 Dec;15(6):385-8. doi: 10.1016/j.anndiagpath.2011.04.004. Epub 2011 Jul 2.
248 Pharmacogenetics of bisphosphonate-associated osteonecrosis of the jaw.Front Biosci (Elite Ed). 2011 Jan 1;3(1):364-70. doi: 10.2741/e251.
249 Proteome alterations associated with transformation of multiple myeloma to secondary plasma cell leukemia.Oncotarget. 2017 Mar 21;8(12):19427-19442. doi: 10.18632/oncotarget.14294.
250 Reduced-intensity conditioning allogeneic transplantation after salvage treatment with DT-PACE in myeloma patients relapsing early after autologous transplant.Eur J Haematol. 2017 Oct;99(4):300-305. doi: 10.1111/ejh.12917. Epub 2017 Jul 20.
251 Glucosylceramidases and malignancies in mammals.Biochimie. 2016 Jun;125:267-80. doi: 10.1016/j.biochi.2015.11.009. Epub 2015 Nov 12.
252 Prognostic value of antigen expression in multiple myeloma: a PETHEMA/GEM study on 1265 patients enrolled in four consecutive clinical trials.Leukemia. 2018 Apr;32(4):971-978. doi: 10.1038/leu.2017.320. Epub 2017 Nov 3.
253 Phenotypic, transcriptomic, and genomic features of clonal plasma cells in light-chain amyloidosis.Blood. 2016 Jun 16;127(24):3035-9. doi: 10.1182/blood-2015-10-673095. Epub 2016 Apr 11.
254 Different gamma/delta T clones sustain GVM and GVH effects in multiple myeloma patients after non-myeloablative transplantation.Leuk Res. 2006 May;30(5):529-35. doi: 10.1016/j.leukres.2005.09.004. Epub 2005 Oct 24.
255 GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR T cells. Sci Transl Med. 2019 Mar 27;11(485):eaau7746.
256 Metabotropic glutamate receptor 3 is involved in B-cell-related tumor apoptosis.Int J Oncol. 2016 Oct;49(4):1469-78. doi: 10.3892/ijo.2016.3623. Epub 2016 Jul 15.
257 Analysis of Global Gene Expression Profiles.Methods Mol Biol. 2018;1792:157-166. doi: 10.1007/978-1-4939-7865-6_11.
258 Critical role for hematopoietic cell kinase (Hck)-mediated phosphorylation of Gab1 and Gab2 docking proteins in interleukin 6-induced proliferation and survival of multiple myeloma cells.J Biol Chem. 2004 May 14;279(20):21658-65. doi: 10.1074/jbc.M305783200. Epub 2004 Mar 9.
259 Targeting histone deacetylase 3 (HDAC3) in the bone marrow microenvironment inhibits multiple myeloma proliferation by modulating exosomes and IL-6 trans-signaling.Leukemia. 2020 Jan;34(1):196-209. doi: 10.1038/s41375-019-0493-x. Epub 2019 May 29.
260 Long noncoding RNA TUG1 promotes proliferation and inhibits apoptosis in multiple myeloma by inhibiting miR-29b-3p.Biosci Rep. 2019 Mar 22;39(3):BSR20182489. doi: 10.1042/BSR20182489. Print 2019 Mar 29.
261 A Small-Molecule Inhibitor Targeting TRIP13 Suppresses Multiple Myeloma Progression.Cancer Res. 2020 Feb 1;80(3):536-548. doi: 10.1158/0008-5472.CAN-18-3987. Epub 2019 Nov 15.
262 Multiple myeloma cells catalyze hepatocyte growth factor (HGF) activation by secreting the serine protease HGF-activator.Blood. 2004 Oct 1;104(7):2172-5. doi: 10.1182/blood-2003-12-4386. Epub 2004 Jun 1.
263 Long-term safety and activity of NY-ESO-1 SPEAR T cells after autologous stem cell transplant for myeloma.Blood Adv. 2019 Jul 9;3(13):2022-2034. doi: 10.1182/bloodadvances.2019000194.
264 Myeloma cells resistance to NK cell lysis mainly involves an HLA class I-dependent mechanism.Acta Biochim Biophys Sin (Shanghai). 2014 Jul;46(7):597-604. doi: 10.1093/abbs/gmu041. Epub 2014 May 21.
265 Transcriptional silencing of the Wnt-antagonist DKK1 by promoter methylation is associated with enhanced Wnt signaling in advanced multiple myeloma.PLoS One. 2012;7(2):e30359. doi: 10.1371/journal.pone.0030359. Epub 2012 Feb 17.
266 Heparanase promotes myeloma stemness and in vivo tumorigenesis.Matrix Biol. 2020 Jun;88:53-68. doi: 10.1016/j.matbio.2019.11.004. Epub 2019 Dec 5.
267 Targeting HSF1: A Prime Integrator of Proteotoxic Stress Response in Myeloma.Clin Cancer Res. 2018 May 15;24(10):2237-2238. doi: 10.1158/1078-0432.CCR-18-0030. Epub 2018 Feb 9.
268 Inhibition of HSP90 overcomes melphalan resistance through downregulation of Src in multiple myeloma cells.Clin Exp Med. 2020 Feb;20(1):63-71. doi: 10.1007/s10238-019-00587-2. Epub 2019 Oct 24.
269 15d-PGJ(2) as an endoplasmic reticulum stress manipulator in multiple myeloma in vitro and in vivo.Exp Mol Pathol. 2017 Jun;102(3):434-445. doi: 10.1016/j.yexmp.2017.05.003. Epub 2017 May 12.
270 GRP78 modulates cell adhesion markers in prostate Cancer and multiple myeloma cell lines.BMC Cancer. 2018 Dec 18;18(1):1263. doi: 10.1186/s12885-018-5178-8.
271 The PI3K/Akt signaling pathway regulates the expression of Hsp70, which critically contributes to Hsp90-chaperone function and tumor cell survival in multiple myeloma.Haematologica. 2013 Jul;98(7):1132-41. doi: 10.3324/haematol.2012.066175. Epub 2012 Oct 12.
272 Bortezomib promotes apoptosis of multiple myeloma cells by regulating HSP27.Mol Med Rep. 2019 Sep;20(3):2410-2418. doi: 10.3892/mmr.2019.10467. Epub 2019 Jul 3.
273 Identification of ID-1 as a potential target gene of MMSET in multiple myeloma.Br J Haematol. 2005 Sep;130(5):700-8. doi: 10.1111/j.1365-2141.2005.05664.x.
274 Molecular Markers and Prognosis of Myelofibrosis in the Genomic Era: A Meta-analysis.Clin Lymphoma Myeloma Leuk. 2018 Sep;18(9):558-568. doi: 10.1016/j.clml.2018.06.004. Epub 2018 Jun 8.
275 Ribosomal protein metallopanstimulin-1 impairs multiple myeloma CAG cells growth and inhibits fibroblast growth factor receptor 3.Clin Lymphoma Myeloma Leuk. 2011 Dec;11(6):490-7. doi: 10.1016/j.clml.2011.06.015. Epub 2011 Sep 1.
276 All-trans retinoic acid in combination with alpha-interferon and dexamethasone for advanced multiple myeloma.Haematologica. 1997 May-Jun;82(3):354-6.
277 RUNX proteins desensitize multiple myeloma to lenalidomide via protecting IKZFs from degradation.Leukemia. 2019 Aug;33(8):2006-2021. doi: 10.1038/s41375-019-0403-2. Epub 2019 Feb 13.
278 Expression of interleukin-11 receptor in CD38-positive cells from patients with multiple myeloma.Leuk Lymphoma. 2004 Nov;45(11):2315-9. doi: 10.1080/10428190412331283161.
279 Constitutive expression of IL-12R beta 2 on human multiple myeloma cells delineates a novel therapeutic target.Blood. 2008 Aug 1;112(3):750-9. doi: 10.1182/blood-2008-02-139378. Epub 2008 May 12.
280 Drug-Induced Senescent Multiple Myeloma Cells Elicit NK Cell Proliferation by Direct or Exosome-Mediated IL15 Trans-Presentation.Cancer Immunol Res. 2018 Jul;6(7):860-869. doi: 10.1158/2326-6066.CIR-17-0604. Epub 2018 Apr 24.
281 Oscillating expression of interleukin-16 in multiple myeloma is associated with proliferation, clonogenic growth, and PI3K/NFKB/MAPK activation.Oncotarget. 2017 Jul 25;8(30):49253-49263. doi: 10.18632/oncotarget.17534.
282 Ectopic expression of wild-type FGFR3 cooperates with MYC to accelerate development of B-cell lineage neoplasms.Leukemia. 2010 Jun;24(6):1171-8. doi: 10.1038/leu.2010.50. Epub 2010 Apr 15.
283 IL21R expressing CD14(+)CD16(+) monocytes expand in multiple myeloma patients leading to increased osteoclasts.Haematologica. 2017 Apr;102(4):773-784. doi: 10.3324/haematol.2016.153841. Epub 2017 Jan 5.
284 Multiple myeloma cell-derived IL-32 increases the immunosuppressive function of macrophages by promoting indoleamine 2,3-dioxygenase (IDO) expression.Cancer Lett. 2019 Apr 1;446:38-48. doi: 10.1016/j.canlet.2019.01.012. Epub 2019 Jan 18.
285 Therapeutic potential of SH2 domain-containing inositol-5'-phosphatase 1 (SHIP1) and SHIP2 inhibition in cancer.Mol Med. 2012 Feb 10;18(1):65-75. doi: 10.2119/molmed.2011.00178.
286 Multiple myeloma BM-MSCs increase the tumorigenicity of MM cells via transfer of VLA4-enriched microvesicles.Carcinogenesis. 2020 Mar 13;41(1):100-110. doi: 10.1093/carcin/bgz169.
287 Unfolded protein response inducers tunicamycin and dithiothreitol promote myeloma cell differentiation mediated by XBP-1.Clin Exp Med. 2015 Feb;15(1):85-96. doi: 10.1007/s10238-013-0269-y. Epub 2013 Dec 20.
288 Highly Expressed Integrin-8 Induces Epithelial to Mesenchymal Transition-Like Features in Multiple Myeloma with Early Relapse. Mol Cells. 2016 Dec;39(12):898-908.
289 The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: therapeutic applications.Oncogene. 2001 Jul 27;20(33):4519-27. doi: 10.1038/sj.onc.1204623.
290 Chimeric Antigen Receptor T-Cell Therapy for Multiple Myeloma.Cancers (Basel). 2019 Dec 15;11(12):2024. doi: 10.3390/cancers11122024.
291 Multiple myeloma exploits Jagged1 and Jagged2 to promote intrinsic and bone marrow-dependent drug resistance.Haematologica. 2020 Jul;105(7):1925-1936. doi: 10.3324/haematol.2019.221077. Epub 2019 Oct 3.
292 LMP1 expression in bone marrow trephines of patients with multiple myeloma confers a survival advantage.Leuk Lymphoma. 2019 Aug;60(8):1991-2001. doi: 10.1080/10428194.2018.1563697. Epub 2019 Mar 26.
293 Tuning Natural Killer Cell Anti-multiple Myeloma Reactivity by Targeting Inhibitory Signaling via KIR and NKG2A.Front Immunol. 2018 Dec 4;9:2848. doi: 10.3389/fimmu.2018.02848. eCollection 2018.
294 Phase I Trial of Autologous CAR T Cells Targeting NKG2D Ligands in Patients with AML/MDS and Multiple Myeloma.Cancer Immunol Res. 2019 Jan;7(1):100-112. doi: 10.1158/2326-6066.CIR-18-0307. Epub 2018 Nov 5.
295 Genetic and transcriptional landscape of plasma cells in POEMS syndrome.Leukemia. 2019 Jul;33(7):1723-1735. doi: 10.1038/s41375-018-0348-x. Epub 2019 Jan 11.
296 Serum galectin-1 in patients with multiple myeloma: associations with survival, angiogenesis, and biomarkers of macrophage activation.Onco Targets Ther. 2017 Apr 4;10:1977-1982. doi: 10.2147/OTT.S124321. eCollection 2017.
297 Aberrantly expressed LGR4 empowers Wnt signaling in multiple myeloma by hijacking osteoblast-derived R-spondins.Proc Natl Acad Sci U S A. 2017 Jan 10;114(2):376-381. doi: 10.1073/pnas.1618650114. Epub 2016 Dec 27.
298 Investigational agent MLN9708/2238 targets tumor-suppressor miR33b in MM cells.Blood. 2012 Nov 8;120(19):3958-67. doi: 10.1182/blood-2012-01-401794. Epub 2012 Sep 14.
299 PRIMA-1Met/APR-246 displays high antitumor activity in multiple myeloma by induction of p73 and Noxa.Mol Cancer Ther. 2013 Nov;12(11):2331-41. doi: 10.1158/1535-7163.MCT-12-1166. Epub 2013 Sep 12.
300 The role of surface molecule CD229 in Multiple Myeloma.Clin Immunol. 2019 Jul;204:69-73. doi: 10.1016/j.clim.2018.10.006. Epub 2018 Oct 13.
301 The cancer germ-line genes MAGE-1, MAGE-3 and PRAME are commonly expressed by human myeloma cells.Eur J Immunol. 2000 Mar;30(3):803-9. doi: 10.1002/1521-4141(200003)30:3<803::AID-IMMU803>3.0.CO;2-P.
302 Histone deacetylase inhibition in combination with MEK or BCL-2 inhibition in multiple myeloma.Haematologica. 2019 Oct;104(10):2061-2074. doi: 10.3324/haematol.2018.211110. Epub 2019 Mar 7.
303 TPL2 kinase regulates the inflammatory milieu of the myeloma niche.Blood. 2014 May 22;123(21):3305-15. doi: 10.1182/blood-2014-02-554071. Epub 2014 Apr 10.
304 Multifunctional role of Erk5 in multiple myeloma.Blood. 2005 Jun 1;105(11):4492-9. doi: 10.1182/blood-2004-08-2985. Epub 2005 Feb 3.
305 Knockdown of long non-coding RNA PCAT-1 inhibits myeloma cell growth and drug resistance via p38 and JNK MAPK pathways.J Cancer. 2019 Oct 20;10(26):6502-6510. doi: 10.7150/jca.35098. eCollection 2019.
306 Poly(ADP-ribose) polymerase family member 14 (PARP14) is a novel effector of the JNK2-dependent pro-survival signal in multiple myeloma.Oncogene. 2013 Sep 5;32(36):4231-42. doi: 10.1038/onc.2012.448. Epub 2012 Oct 8.
307 New insights in myeloma-induced osteolysis.Leuk Lymphoma. 2003 Sep;44(9):1463-7. doi: 10.3109/10428190309178765.
308 Targeting phospho-MARCKS overcomes drug-resistance and induces antitumor activity in preclinical models of multiple myeloma.Leukemia. 2015 Mar;29(3):715-26. doi: 10.1038/leu.2014.255. Epub 2014 Sep 2.
309 The Role of Complement Activating Collectins and Associated Serine Proteases in Patients With Hematological Malignancies, Receiving High-Dose Chemotherapy, and Autologous Hematopoietic Stem Cell Transplantations (Auto-HSCT).Front Immunol. 2018 Sep 20;9:2153. doi: 10.3389/fimmu.2018.02153. eCollection 2018.
310 Phase 1 study of the MDM2 inhibitor AMG 232 in patients with advanced P53 wild-type solid tumors or multiple myeloma.Invest New Drugs. 2020 Jun;38(3):831-843. doi: 10.1007/s10637-019-00840-1. Epub 2019 Jul 29.
311 Diagnostic Algorithm of Common Mature B-Cell Lymphomas by Immunohistochemistry.Arch Pathol Lab Med. 2017 Sep;141(9):1236-1246. doi: 10.5858/arpa.2016-0521-RA. Epub 2017 Jun 13.
312 Expression and induction of collagenases (MMP-8 and -13) in plasma cells associated with bone-destructive lesions.J Pathol. 2001 Jun;194(2):217-24. doi: 10.1002/path.854.
313 In vitro Generation of Cytotoxic T Cells With Potential for Adoptive Tumor Immunotherapy of Multiple Myeloma.Front Immunol. 2019 Aug 2;10:1792. doi: 10.3389/fimmu.2019.01792. eCollection 2019.
314 Overexpression of salivary-type amylase reduces the sensitivity to bortezomib in multiple myeloma cells.Int J Hematol. 2015 Nov;102(5):569-78. doi: 10.1007/s12185-015-1859-0. Epub 2015 Sep 4.
315 Simultaneous Presentation of Waldenstrm's Macroglobulinemia and MYD88 Gene Mutation with Multiple Myeloma.Cureus. 2019 Jan 3;11(1):e3822. doi: 10.7759/cureus.3822.
316 IDH2 inhibition enhances proteasome inhibitor responsiveness in hematological malignancies.Blood. 2019 Jan 10;133(2):156-167. doi: 10.1182/blood-2018-05-850826. Epub 2018 Nov 19.
317 A Phase I Study to Assess the Safety and Pharmacokinetics of Single-agent Lorvotuzumab Mertansine (IMGN901) in Patients with Relapsed and/or Refractory CD-56-positive Multiple Myeloma.Clin Lymphoma Myeloma Leuk. 2019 Jan;19(1):29-34. doi: 10.1016/j.clml.2018.08.018. Epub 2018 Sep 5.
318 Differential expression of natural killer cell activating receptors in blood versus bone marrow in patients with monoclonal gammopathy.Immunology. 2013 Jul;139(3):338-41. doi: 10.1111/imm.12082.
319 Activity of TAS4464, a novel NEDD8 activating enzyme E1 inhibitor, against multiple myeloma via inactivation of nuclear factor B pathways.Cancer Sci. 2019 Dec;110(12):3802-3810. doi: 10.1111/cas.14209. Epub 2019 Oct 23.
320 Upregulation of FOXM1 leads to diminished drug sensitivity in myeloma.BMC Cancer. 2018 Nov 21;18(1):1152. doi: 10.1186/s12885-018-5015-0.
321 The effect of marrow stromal cells on TRAF6 expression levels in myeloma cells.Oncol Lett. 2017 Aug;14(2):1464-1470. doi: 10.3892/ol.2017.6322. Epub 2017 Jun 6.
322 Haplotypic structure across the I kappa B alpha gene (NFKBIA) and association with multiple myeloma.Cancer Lett. 2007 Feb 8;246(1-2):92-9. doi: 10.1016/j.canlet.2006.02.001. Epub 2006 Mar 15.
323 Dual Targeting of CDK4 and ARK5 Using a Novel Kinase Inhibitor ON123300 Exerts Potent Anticancer Activity against Multiple Myeloma.Cancer Res. 2016 Mar 1;76(5):1225-36. doi: 10.1158/0008-5472.CAN-15-2934. Epub 2016 Feb 12.
324 Long-term reduction of amplified ornithine decarboxylase sequences in human myeloma cells.Biochem J. 1995 Aug 15;310 ( Pt 1)(Pt 1):299-303. doi: 10.1042/bj3100299.
325 Identification of a CARM1 Inhibitor with Potent In Vitro and In Vivo Activity in Preclinical Models of Multiple Myeloma.Sci Rep. 2017 Dec 21;7(1):17993. doi: 10.1038/s41598-017-18446-z.
326 The clinical characteristics and prognosis of IGH deletion in multiple myeloma.Leuk Res. 2015 May;39(5):515-9. doi: 10.1016/j.leukres.2015.02.010. Epub 2015 Mar 18.
327 Overexpression of MDR1 and survivin, and decreased Bim expression mediate multidrug-resistance in multiple myeloma cells.Leuk Res. 2012 Oct;36(10):1315-22. doi: 10.1016/j.leukres.2012.07.003. Epub 2012 Jul 19.
328 Long non-coding RNA NEAT1 targeting impairs the DNA repair machinery and triggers anti-tumor activity in multiple myeloma.Leukemia. 2020 Jan;34(1):234-244. doi: 10.1038/s41375-019-0542-5. Epub 2019 Aug 19.
329 Protein Expression for Novel Prognostic Markers (Cyclins D1, D2, D3, B1, B2, ITG7, FGFR3, PAX5) Correlate With Previously Reported Gene Expression Profile Patterns in Plasma Cell Myeloma.Appl Immunohistochem Mol Morphol. 2015 May-Jun;23(5):327-33. doi: 10.1097/PAI.0000000000000089.
330 PBK/TOPK is a novel mitotic kinase which is upregulated in Burkitt's lymphoma and other highly proliferative malignant cells.Blood Cells Mol Dis. 2001 Sep-Oct;27(5):825-9. doi: 10.1006/bcmd.2001.0452.
331 Downregulation of CKS1B restrains the proliferation, migration, invasion and angiogenesis of retinoblastoma cells through the MEK/ERK signaling pathway.Int J Mol Med. 2019 Jul;44(1):103-114. doi: 10.3892/ijmm.2019.4183. Epub 2019 May 8.
332 PDCD1 and PDCD1LG1 polymorphisms affect the susceptibility to multiple myeloma.Clin Exp Med. 2020 Feb;20(1):51-62. doi: 10.1007/s10238-019-00585-4. Epub 2019 Oct 16.
333 PDK1 inhibitor GSK2334470 synergizes with proteasome inhibitor MG?32 in multiple myeloma cells by inhibiting full AKT activity and increasing nuclear accumulation of the PTEN protein.Oncol Rep. 2018 Jun;39(6):2951-2959. doi: 10.3892/or.2018.6369. Epub 2018 Apr 12.
334 Chromosomal instability and acquired drug resistance in multiple myeloma.Oncotarget. 2017 Sep 11;8(44):78234-78244. doi: 10.18632/oncotarget.20829. eCollection 2017 Sep 29.
335 Overexpression of PDZK1 within the 1q12-q22 amplicon is likely to be associated with drug-resistance phenotype in multiple myeloma.Am J Pathol. 2004 Jul;165(1):71-81. doi: 10.1016/S0002-9440(10)63276-2.
336 Pan-PIM kinase inhibitors enhance Lenalidomide's anti-myeloma activity via cereblon-IKZF1/3 cascade.Cancer Lett. 2019 Jan;440-441:1-10. doi: 10.1016/j.canlet.2018.10.003. Epub 2018 Oct 9.
337 Unique anti-myeloma activity by thiazolidine-2,4-dione compounds with Pim inhibiting activity.Br J Haematol. 2018 Jan;180(2):246-258. doi: 10.1111/bjh.15033.
338 PRAME Gene Copy Number Variation Is Related to Its Expression in Multiple Myeloma.DNA Cell Biol. 2017 Dec;36(12):1099-1107. doi: 10.1089/dna.2017.3951. Epub 2017 Sep 27.
339 Anticancer activity of a Gold(I) phosphine thioredoxin reductase inhibitor in multiple myeloma.Redox Biol. 2020 Jan;28:101310. doi: 10.1016/j.redox.2019.101310. Epub 2019 Aug 28.
340 Construction of a recombinant lentivirus-mediated shRNA expression vector targeting the human PSMD10 gene and validation of RNAi efficiency in RPMI?226 multiple myeloma cells.Oncol Rep. 2017 Aug;38(2):809-818. doi: 10.3892/or.2017.5770. Epub 2017 Jun 30.
341 Translational impact of novel widely pharmacological characterized mofezolac-derived COX-1 inhibitors combined with bortezomib on human multiple myeloma cell lines viability.Eur J Med Chem. 2019 Feb 15;164:59-76. doi: 10.1016/j.ejmech.2018.12.029. Epub 2018 Dec 15.
342 Effects of BENC-511, a novel PI3K inhibitor, on the proliferation and apoptosis of A549 human lung adenocarcinoma cells.Biosci Trends. 2019;13(1):40-48. doi: 10.5582/bst.2019.01006.
343 IL6 Promotes a STAT3-PRL3 Feedforward Loop via SHP2 Repression in Multiple Myeloma.Cancer Res. 2019 Sep 15;79(18):4679-4688. doi: 10.1158/0008-5472.CAN-19-0343. Epub 2019 Jul 23.
344 Clinical effects of CD45 on the prognosis of extramedullary myeloma relapse.J Clin Pharm Ther. 2020 Feb;45(1):144-151. doi: 10.1111/jcpt.13045. Epub 2019 Sep 18.
345 Gene expression profile of ADAMs and ADAMTSs metalloproteinases in normal and malignant plasma cells and in the bone marrow environment.Exp Hematol. 2011 May;39(5):546-557.e8. doi: 10.1016/j.exphem.2011.02.002. Epub 2011 Mar 3.
346 Orphan receptor tyrosine kinases ROR1 and ROR2 in hematological malignancies.Leuk Lymphoma. 2013 Apr;54(4):843-50. doi: 10.3109/10428194.2012.731599. Epub 2012 Oct 9.
347 Molecular chaperone gp96 is a novel therapeutic target of multiple myeloma.Clin Cancer Res. 2013 Nov 15;19(22):6242-51. doi: 10.1158/1078-0432.CCR-13-2083. Epub 2013 Sep 27.
348 Runx2 Suppression by miR-342 and miR-363 Inhibits Multiple Myeloma Progression.Mol Cancer Res. 2018 Jul;16(7):1138-1148. doi: 10.1158/1541-7786.MCR-17-0606. Epub 2018 Mar 28.
349 Loss of the Immune Checkpoint CD85j/LILRB1 on Malignant Plasma Cells Contributes to Immune Escape in Multiple Myeloma.J Immunol. 2018 Apr 15;200(8):2581-2591. doi: 10.4049/jimmunol.1701622. Epub 2018 Mar 12.
350 Sphingosine-1-phosphate activates chemokine-promoted myeloma cell adhesion and migration involving 41 integrin function.J Pathol. 2013 Jan;229(1):36-48. doi: 10.1002/path.4066.
351 Comparison between autologous and allogeneic stem cell transplantation as salvage therapy for multiple myeloma relapsing/progressing after autologous stem cell transplantation.Hematol Oncol. 2019 Dec;37(5):586-594. doi: 10.1002/hon.2688. Epub 2019 Nov 23.
352 Dynamic CD138 surface expression regulates switch between myeloma growth and dissemination.Leukemia. 2020 Jan;34(1):245-256. doi: 10.1038/s41375-019-0519-4. Epub 2019 Aug 22.
353 Relapsing bullous amyloidosis of the oral mucosa and acquired cutis laxa in a patient with multiple myeloma: a rare triple association.Clin Exp Dermatol. 2017 Jun;42(4):410-412. doi: 10.1111/ced.13084. Epub 2017 Mar 1.
354 EEN regulates the proliferation and survival of multiple myeloma cells by potentiating IGF-1 secretion.Biochem Biophys Res Commun. 2014 May 2;447(2):271-7. doi: 10.1016/j.bbrc.2014.03.127. Epub 2014 Apr 2.
355 Pharmacogenomics and chemical library screens reveal a novel SCF(SKP2) inhibitor that overcomes Bortezomib resistance in multiple myeloma.Leukemia. 2017 Mar;31(3):645-653. doi: 10.1038/leu.2016.258. Epub 2016 Sep 28.
356 Soluble SLAMF7 promotes the growth of myeloma cells via homophilic interaction with surface SLAMF7.Leukemia. 2020 Jan;34(1):180-195. doi: 10.1038/s41375-019-0525-6. Epub 2019 Jul 29.
357 Effective impairment of myeloma cells and their progenitors by blockade of monocarboxylate transportation.Oncotarget. 2015 Oct 20;6(32):33568-86. doi: 10.18632/oncotarget.5598.
358 Multiple myeloma exhibits novel dependence on GLUT4, GLUT8, and GLUT11: implications for glucose transporter-directed therapy.Blood. 2012 May 17;119(20):4686-97. doi: 10.1182/blood-2011-09-377846. Epub 2012 Mar 27.
359 Development of GLUT4-selective antagonists for multiple myeloma therapy.Eur J Med Chem. 2017 Oct 20;139:573-586. doi: 10.1016/j.ejmech.2017.08.029. Epub 2017 Aug 14.
360 Glucose transporters in cancer metabolism.Curr Opin Oncol. 2012 Nov;24(6):650-4. doi: 10.1097/CCO.0b013e328356da72.
361 A common variant within the HNF1B gene is associated with overall survival of multiple myeloma patients: results from the IMMEnSE consortium and meta-analysis.Oncotarget. 2016 Sep 13;7(37):59029-59048. doi: 10.18632/oncotarget.10665.
362 Concomitant downregulation of proliferation/survival pathways dependent on FGF-R3, JAK2 and BCMA in human multiple myeloma cells by multi-kinase targeting.Biochem Pharmacol. 2009 Nov 1;78(9):1139-47. doi: 10.1016/j.bcp.2009.06.023. Epub 2009 Jun 23.
363 Down-regulation of CD98 in melphalan-resistant myeloma cells with reduced drug uptake.Acta Haematol. 2000;103(3):144-51. doi: 10.1159/000041037.
364 A Single Nucleotide Polymorphism in SLC7A5 Was Associated With Clinical Response in Multiple Myeloma Patients.Anticancer Res. 2019 Jan;39(1):67-72. doi: 10.21873/anticanres.13080.
365 Integrated molecular profiling of SOD2 expression in multiple myeloma.Blood. 2007 May 1;109(9):3953-62. doi: 10.1182/blood-2006-07-035162. Epub 2006 Dec 27.
366 Increased Osteoblastic Activity Suppressed Proliferation of Multiple Myeloma Plasma Cells.Spine (Phila Pa 1976). 2019 Apr 1;44(7):E384-E392. doi: 10.1097/BRS.0000000000002873.
367 Genome-wide transcriptional response to 5-aza-2'-deoxycytidine and trichostatin a in multiple myeloma cells.Cancer Res. 2008 Jan 1;68(1):44-54. doi: 10.1158/0008-5472.CAN-07-2531.
368 The combination of a sphingosine kinase 2 inhibitor (ABC294640) and a Bcl-2 inhibitor (ABT-199) displays synergistic anti-myeloma effects in myeloma cells without a t(11;14) translocation.Cancer Med. 2018 Jul;7(7):3257-3268. doi: 10.1002/cam4.1543. Epub 2018 May 15.
369 Serglycin proteoglycan is required for multiple myeloma cell adhesion, in vivo growth, and vascularization.J Biol Chem. 2014 Feb 28;289(9):5499-509. doi: 10.1074/jbc.M113.532143. Epub 2014 Jan 8.
370 STEAP1 is overexpressed in cancers: a promising therapeutic target.Biochem Biophys Res Commun. 2012 Dec 14;429(3-4):148-55. doi: 10.1016/j.bbrc.2012.10.123. Epub 2012 Nov 6.
371 CD4?T cells in chronic autoantigenic stimulation in MGUS, multiple myeloma and Waldenstrm's macroglobulinemia.Int J Cancer. 2015 Sep 1;137(5):1076-84. doi: 10.1002/ijc.29478. Epub 2015 Feb 26.
372 Correlation of TACC3, FGFR3, MMSET and p21 expression with the t(4;14)(p16.3;q32) in multiple myeloma.Br J Haematol. 2004 Jul;126(1):72-6. doi: 10.1111/j.1365-2141.2004.04996.x.
373 DNA hypermethylation and partial gene silencing of human thymine- DNA glycosylase in multiple myeloma cell lines.Epigenetics. 2006 Jul-Sep;1(3):138-45. doi: 10.4161/epi.1.3.2938. Epub 2006 May 25.
374 Altered mRNA expression of telomere-associated genes in monoclonal gammopathy of undetermined significance and multiple myeloma.Mol Med. 2010 Nov-Dec;16(11-12):471-8. doi: 10.2119/molmed.2010.00057. Epub 2010 Jul 14.
375 Thymosin 4 has tumor suppressive effects and its decreased expression results in poor prognosis and decreased survival in multiple myeloma.Haematologica. 2010 Jan;95(1):163-7. doi: 10.3324/haematol.2009.006411. Epub 2009 Oct 14.
376 NF-B-dependent RANKL expression in a mouse model of immature T-cell leukemia.Biochem Biophys Res Commun. 2019 Mar 5;510(2):272-277. doi: 10.1016/j.bbrc.2019.01.089. Epub 2019 Jan 30.
377 A role of both NF-B pathways in expression and transcription regulation of BAFF-R gene in multiple myeloma cells.Mol Cell Biochem. 2011 Nov;357(1-2):21-30. doi: 10.1007/s11010-011-0871-9. Epub 2011 May 24.
378 Expression of GITR Enhances Multiple Myeloma Cell Sensitivity to Bortezomib.PLoS One. 2015 May 14;10(5):e0127334. doi: 10.1371/journal.pone.0127334. eCollection 2015.
379 High expression of TRAIL by osteoblastic differentiated dental pulp stem cells affects myeloma cell viability.Oncol Rep. 2018 Apr;39(4):2031-2039. doi: 10.3892/or.2018.6272. Epub 2018 Feb 15.
380 Role of the RANK/RANKL Pathway in Multiple Myeloma.Clin Cancer Res. 2019 Jan 1;25(1):12-20. doi: 10.1158/1078-0432.CCR-18-1537. Epub 2018 Aug 9.
381 Characteristics of BAFF and APRIL factor expression in multiple myeloma and clinical significance.Oncol Lett. 2017 Sep;14(3):2657-2662. doi: 10.3892/ol.2017.6528. Epub 2017 Jul 7.
382 Synergistic inhibition effect of TNIK inhibitor KY-05009 and receptor tyrosine kinase inhibitor dovitinib on IL-6-induced proliferation and Wnt signaling pathway in human multiple myeloma cells.Oncotarget. 2017 Jun 20;8(25):41091-41101. doi: 10.18632/oncotarget.17056.
383 Drug resistance to DNA topoisomerase I and II inhibitors in human leukemia, lymphoma, and multiple myeloma.Semin Hematol. 1997 Oct;34(4 Suppl 5):48-62.
384 Expression profile of shelterin components in plasma cell disorders. Clinical significance of POT1 overexpression.Blood Cells Mol Dis. 2014 Feb-Mar;52(2-3):134-9. doi: 10.1016/j.bcmd.2013.10.002. Epub 2013 Nov 14.
385 TRAF6 Silencing Attenuates Multiple Myeloma Cell Adhesion to Bone Marrow Stromal Cells.Int J Mol Sci. 2019 Feb 6;20(3):702. doi: 10.3390/ijms20030702.
386 MTI-101 treatment inducing activation of Stim1 and TRPC1 expression is a determinant of response in multiple myeloma.Sci Rep. 2017 Jun 2;7(1):2685. doi: 10.1038/s41598-017-02713-0.
387 TRPV2-induced Ca(2+)-calcineurin-NFAT signaling regulates differentiation of osteoclast in multiple myeloma.Cell Commun Signal. 2018 Oct 16;16(1):68. doi: 10.1186/s12964-018-0280-8.
388 Tetraspanin 7 (TSPAN7) expression is upregulated in multiple myeloma patients and inhibits myeloma tumour development in vivo.Exp Cell Res. 2015 Mar 1;332(1):24-38. doi: 10.1016/j.yexcr.2015.01.006. Epub 2015 Jan 28.
389 Inhibition of thioredoxin activates mitophagy and overcomes adaptive bortezomib resistance in multiple myeloma.J Hematol Oncol. 2018 Feb 27;11(1):29. doi: 10.1186/s13045-018-0575-7.
390 Role of Growth arrest-specific gene 6-Mer axis in multiple myeloma.Leukemia. 2015 Mar;29(3):696-704. doi: 10.1038/leu.2014.236. Epub 2014 Aug 8.
391 A novel carbohydrate-based therapeutic GCS-100 overcomes bortezomib resistance and enhances dexamethasone-induced apoptosis in multiple myeloma cells.Cancer Res. 2005 Sep 15;65(18):8350-8. doi: 10.1158/0008-5472.CAN-05-0163.
392 miR-125a suppresses malignancy of multiple myeloma by reducing the deubiquitinase USP5.J Cell Biochem. 2020 Jan;121(1):642-650. doi: 10.1002/jcb.29309. Epub 2019 Aug 26.
393 Destabilizing NEK2 overcomes resistance to proteasome inhibition in multiple myeloma.J Clin Invest. 2018 Jul 2;128(7):2877-2893. doi: 10.1172/JCI98765. Epub 2018 Jun 4.
394 Novel cell line models to study mechanisms and overcoming strategies of proteasome inhibitor resistance in multiple myeloma.Biochim Biophys Acta Mol Basis Dis. 2019 Jun 1;1865(6):1666-1676. doi: 10.1016/j.bbadis.2019.04.003. Epub 2019 Apr 4.
395 Gene expression meta-analysis identifies VDAC1 as a predictor of poor outcome in early stage non-small cell lung cancer.PLoS One. 2011 Jan 31;6(1):e14635. doi: 10.1371/journal.pone.0014635.
396 Potent antimyeloma activity of a novel ERK5/CDK inhibitor.Clin Cancer Res. 2013 May 15;19(10):2677-87. doi: 10.1158/1078-0432.CCR-12-2118. Epub 2013 Mar 26.
397 XPO1 is a critical player for bortezomib resistance in multiple myeloma: A quantitative proteomic approach.J Proteomics. 2019 Oct 30;209:103504. doi: 10.1016/j.jprot.2019.103504. Epub 2019 Aug 26.
398 Promiscuity of translocation partners in multiple myeloma.J Cell Biochem. 2010 Apr 15;109(6):1085-94. doi: 10.1002/jcb.22499.
399 ZAP-70 is expressed by normal and malignant human B-cell subsets of different maturational stage.Leukemia. 2006 Apr;20(4):689-95. doi: 10.1038/sj.leu.2404138.
400 Blockade of deubiquitylating enzyme Rpn11 triggers apoptosis in multiple myeloma cells and overcomes bortezomib resistance.Oncogene. 2017 Oct 5;36(40):5631-5638. doi: 10.1038/onc.2017.172. Epub 2017 Jun 5.
401 T Cell Transcriptional Profiling and Immunophenotyping Uncover LAG3 as a Potential Significant Target of Immune Modulation in Multiple Myeloma.Biol Blood Marrow Transplant. 2020 Jan;26(1):7-15. doi: 10.1016/j.bbmt.2019.08.009. Epub 2019 Aug 21.
402 An Lysophosphatidic Acid Receptors 1 and 3 Axis Governs Cellular Senescence of Mesenchymal Stromal Cells and Promotes Growth and Vascularization of Multiple Myeloma.Stem Cells. 2017 Mar;35(3):739-753. doi: 10.1002/stem.2499. Epub 2016 Sep 29.
403 Lenalidomide and Low Dose Dexamethasone Plus Elotuzumab or Carfilzomib for Relapsed or Refractory Multiple Myeloma: A Comparison of Progression-Free Survival with Reconstructed Individual Participant Data.Biomed Res Int. 2018 Dec 16;2018:9057823. doi: 10.1155/2018/9057823. eCollection 2018.
404 Expression of ABCB5 gene in hematological malignances and its significance.Leuk Lymphoma. 2012 Jun;53(6):1211-5. doi: 10.3109/10428194.2011.637214. Epub 2011 Dec 7.
405 Impact of Polymorphic Variations of Gemcitabine Metabolism, DNA Damage Repair, and Drug-Resistance Genes on the Effect of High-Dose Chemotherapy for Relapsed or Refractory Lymphoid Malignancies.Biol Blood Marrow Transplant. 2016 May;22(5):843-9. doi: 10.1016/j.bbmt.2015.12.022. Epub 2015 Dec 29.
406 MNK kinases facilitate c-myc IRES activity in rapamycin-treated multiple myeloma cells.Oncogene. 2013 Jan 10;32(2):190-7. doi: 10.1038/onc.2012.43. Epub 2012 Feb 27.
407 Mouse and human ornithine decarboxylase genes. Methylation polymorphism and amplification.Biochem J. 1987 Feb 15;242(1):205-10. doi: 10.1042/bj2420205.
408 Expression and function of the calcitonin receptor by myeloma cells in their osteoclast-like activity in vitro.Leuk Res. 2008 Apr;32(4):611-23. doi: 10.1016/j.leukres.2007.07.009. Epub 2007 Aug 21.
409 A molecular compendium of genes expressed in multiple myeloma.Blood. 2002 Sep 15;100(6):2175-86. doi: 10.1182/blood-2002-01-0008.
410 Combined Group I and III ABO Discrepancies in Multiple Myeloma with IgG-Lambda Type: A Case Report.Med Princ Pract. 2017;26(1):90-92. doi: 10.1159/000450579. Epub 2016 Sep 5.
411 Restoration of the prolyl-hydroxylase domain protein-3 oxygen-sensing mechanism is responsible for regulation of HIF2 expression and induction of sensitivity of myeloma cells to hypoxia-mediated apoptosis.PLoS One. 2017 Dec 5;12(12):e0188438. doi: 10.1371/journal.pone.0188438. eCollection 2017.
412 MUC1-C drives MYC in multiple myeloma.Blood. 2016 May 26;127(21):2587-97. doi: 10.1182/blood-2015-07-659151. Epub 2016 Feb 23.
413 Polymorphisms of methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTR), methionine synthase reductase (MTRR), and thymidylate synthase (TYMS) in multiple myeloma risk.Leuk Res. 2008 Mar;32(3):401-5. doi: 10.1016/j.leukres.2007.06.001. Epub 2007 Jul 25.
414 Differential repetitive DNA methylation in multiple myeloma molecular subgroups.Carcinogenesis. 2009 Aug;30(8):1330-5. doi: 10.1093/carcin/bgp149. Epub 2009 Jun 16.
415 Tartrate-resistant acid phosphatase isoform 5b: a novel serum marker for monitoring bone disease in multiple myeloma.Int J Cancer. 2003 Sep 1;106(3):455-7. doi: 10.1002/ijc.11247.
416 Association between CYP2C8 (rs1934951) polymorphism and bisphosphonate-related osteonecrosis of the jaws in patients on bisphosphonate therapy: a meta-analysis.Acta Haematol. 2013;129(2):90-5. doi: 10.1159/000342120. Epub 2012 Nov 21.
417 Unaccounted uncertainty from qPCR efficiency estimates entails uncontrolled false positive rates.BMC Bioinformatics. 2016 Apr 11;17:159. doi: 10.1186/s12859-016-0997-6.
418 Identification of a novel murine IAP-promoted placenta-expressed gene.Nucleic Acids Res. 1991 Jul 11;19(13):3667-72. doi: 10.1093/nar/19.13.3667.
419 Polymorphisms of human N-acetyltransferases and cancer risk.Curr Drug Metab. 2008 Jul;9(6):520-31. doi: 10.2174/138920008784892083.
420 High throughput quantitative reverse transcription PCR assays revealing over-expression of cancer testis antigen genes in multiple myeloma stem cell-like side population cells.Br J Haematol. 2014 Sep;166(5):711-9. doi: 10.1111/bjh.12951. Epub 2014 May 29.
421 Genetic polymorphism in the sulfotransferase SULT1A1 gene in cancer.Cancer Genet Cytogenet. 2005 Jul 1;160(1):55-60. doi: 10.1016/j.cancergencyto.2004.12.005.
422 Panobinostat Plus Bortezomib Versus Lenalidomide in Patients with Relapsed and/or Refractory Multiple Myeloma: A Matching-Adjusted Indirect Treatment Comparison of Survival Outcomes using Patient-level Data.Appl Health Econ Health Policy. 2017 Feb;15(1):45-55. doi: 10.1007/s40258-016-0271-0.
423 Epigenetic inactivation of ADAMTS9 via promoter methylation in multiple myeloma.Mol Med Rep. 2013 Mar;7(3):1055-61. doi: 10.3892/mmr.2013.1291. Epub 2013 Jan 28.
424 LncRNA MALAT-1 Elevates HMGB1 to Promote Autophagy Resulting in Inhibition of Tumor Cell Apoptosis in Multiple Myeloma.J Cell Biochem. 2017 Oct;118(10):3341-3348. doi: 10.1002/jcb.25987. Epub 2017 May 3.
425 ANKHD1 represses p21 (WAF1/CIP1) promoter and promotes multiple myeloma cell growth.Eur J Cancer. 2015 Jan;51(2):252-9. doi: 10.1016/j.ejca.2014.11.012. Epub 2014 Dec 4.
426 The Role of B-Cell Maturation Antigen in the Biology and Management of, and as a Potential Therapeutic Target in, Multiple Myeloma.Target Oncol. 2018 Feb;13(1):39-47. doi: 10.1007/s11523-017-0538-x.
427 Bim is the key mediator of glucocorticoid-induced apoptosis and of its potentiation by rapamycin in human myeloma cells.Biochim Biophys Acta. 2010 Feb;1803(2):311-22. doi: 10.1016/j.bbamcr.2009.11.004. Epub 2009 Nov 13.
428 Bcl2-interacting killer CpG methylation in multiple myeloma: a potential predictor of relapsed/refractory disease with therapeutic implications.Leuk Lymphoma. 2012 Sep;53(9):1709-13. doi: 10.3109/10428194.2012.661854. Epub 2012 Mar 13.
429 Vicious cycle between myeloma cell binding to bone marrow stromal cells via VLA-4-VCAM-1 adhesion and macrophage inflammatory protein-1alpha and MIP-1beta production.J Bone Miner Metab. 2009;27(1):16-23. doi: 10.1007/s00774-008-0012-z. Epub 2008 Dec 5.
430 Cancer cell-associated cytoplasmic B7-H4 is induced by hypoxia through hypoxia-inducible factor-1 and promotes cancer cell proliferation.Biochem Biophys Res Commun. 2015 Apr 3;459(2):277-283. doi: 10.1016/j.bbrc.2015.02.098. Epub 2015 Feb 26.
431 Tumor suppressor CD99 is downregulated in plasma cell neoplasms lacking CCND1 translocation and distinguishes neoplastic from normal plasma cells and B-cell lymphomas with plasmacytic differentiation from primary plasma cell neoplasms.Mod Pathol. 2018 Jun;31(6):881-889. doi: 10.1038/s41379-018-0011-0. Epub 2018 Feb 5.
432 Oncogene-induced senescence: a potential breakpoint mechanism against malignant transformation in plasma cell disorders.Leuk Lymphoma. 2018 Nov;59(11):2660-2669. doi: 10.1080/10428194.2018.1443450. Epub 2018 Apr 4.
433 CIP2A regulates proliferation and apoptosis of multiple myeloma cells.Mol Med Rep. 2016 Sep;14(3):2705-9. doi: 10.3892/mmr.2016.5553. Epub 2016 Jul 27.
434 Mechanisms of peripheral neuropathy associated with bortezomib and vincristine in patients with newly diagnosed multiple myeloma: a prospective analysis of data from the HOVON-65/GMMG-HD4 trial. Lancet Oncol. 2010 Nov;11(11):1057-65. doi: 10.1016/S1470-2045(10)70206-0. Epub 2010 Sep 21.
435 A phase II trial of BAY 43-9006 (sorafenib) (NSC-724772) in patients with relapsing and resistant multiple myeloma: SWOG S0434.Cancer Med. 2014 Oct;3(5):1275-83. doi: 10.1002/cam4.276. Epub 2014 Jun 10.
436 DLC1 tumor suppressor gene inhibits migration and invasion of multiple myeloma cells through RhoA GTPase pathway.Leukemia. 2009 Feb;23(2):383-90. doi: 10.1038/leu.2008.285. Epub 2008 Oct 16.
437 eIF4E and eIF4GI have distinct and differential imprints on multiple myeloma's proteome and signaling.Oncotarget. 2015 Feb 28;6(6):4315-29. doi: 10.18632/oncotarget.3008.
438 RPL5 on 1p22.1 is recurrently deleted in multiple myeloma and its expression is linked to bortezomib response.Leukemia. 2017 Aug;31(8):1706-1714. doi: 10.1038/leu.2016.370. Epub 2016 Dec 2.
439 Syndecan-1 promotes Wnt/-catenin signaling in multiple myeloma by presenting Wnts and R-spondins.Blood. 2018 Mar 1;131(9):982-994. doi: 10.1182/blood-2017-07-797050. Epub 2017 Dec 6.
440 Myelopoiesis dysregulation associated to sustained APRIL production in multiple myeloma-infiltrated bone marrow.Leukemia. 2015 Sep;29(9):1901-8. doi: 10.1038/leu.2015.68. Epub 2015 Mar 10.
441 Down-regulated G protein-coupled receptor kinase 6 leads to apoptosis in multiple myeloma MM1R cells.Exp Ther Med. 2018 Nov;16(5):4253-4259. doi: 10.3892/etm.2018.6722. Epub 2018 Sep 11.
442 The inhibitor of growth 1 (ING1) proteins suppress angiogenesis and differentially regulate angiopoietin expression in glioblastoma cells.Oncol Res. 2009;18(2-3):95-105. doi: 10.3727/096504009789954645.
443 Macrophage Inhibitory Factor-1 (MIF-1) controls the plasticity of multiple myeloma tumor cells.PLoS One. 2018 Nov 1;13(11):e0206368. doi: 10.1371/journal.pone.0206368. eCollection 2018.
444 Quercetin suppresses the proliferation of multiple myeloma cells by down-regulating IQ motif-containing GTPase activating protein 1 expression and extracellular signal-regulated kinase activation.Leuk Lymphoma. 2014 Nov;55(11):2597-604. doi: 10.3109/10428194.2013.879128. Epub 2014 Mar 7.
445 An IgG1 Version of the Anti-transferrin Receptor 1 Antibody ch128.1 Shows Significant Antitumor Activity Against Different Xenograft Models of Multiple Myeloma: A Brief Communication.J Immunother. 2020 Feb/Mar;43(2):48-52. doi: 10.1097/CJI.0000000000000304.
446 Role of Galectins in Multiple Myeloma.Int J Mol Sci. 2017 Dec 17;18(12):2740. doi: 10.3390/ijms18122740.
447 Small interfering RNA-mediated silencing of nicotinamide phosphoribosyltransferase (NAMPT) and lysosomal trafficking regulator (LYST) induce growth inhibition and apoptosis in human multiple myeloma cells: A preliminary study.Bosn J Basic Med Sci. 2016 Nov 10;16(4):268-275. doi: 10.17305/bjbms.2016.1568.
448 Immunohistochemistry for identification of CCND1, NSD2, and MAF gene rearrangements in plasma cell myeloma.Cancer Sci. 2019 Aug;110(8):2600-2606. doi: 10.1111/cas.14109. Epub 2019 Jul 11.
449 Chromosomal translocations t(4;14), t(11;14) and proliferation rate stratify patients with mature plasma cell myelomas into groups with different survival probabilities: a molecular epidemiologic study on tissue microarrays.Am J Surg Pathol. 2007 May;31(5):690-6. doi: 10.1097/01.pas.0000213399.87816.56.
450 Differential Expression of Non-Shelterin Genes Associated with High Telomerase Levels and Telomere Shortening in Plasma Cell Disorders.PLoS One. 2015 Sep 14;10(9):e0137972. doi: 10.1371/journal.pone.0137972. eCollection 2015.
451 MYEOV is a prognostic factor in multiple myeloma.Exp Hematol. 2010 Dec;38(12):1189-1198.e3. doi: 10.1016/j.exphem.2010.09.002. Epub 2010 Sep 18.
452 High expression of MZB1 predicts adverse prognosis in chronic lymphocytic leukemia, follicular lymphoma and diffuse large B-cell lymphoma and is associated with a unique gene expression signature.Leuk Lymphoma. 2013 Aug;54(8):1652-7. doi: 10.3109/10428194.2012.753445. Epub 2012 Dec 27.
453 Frequent PVT1 rearrangement and novel chimeric genes PVT1-NBEA and PVT1-WWOX occur in multiple myeloma with 8q24 abnormality.Cancer Res. 2012 Oct 1;72(19):4954-62. doi: 10.1158/0008-5472.CAN-12-0213. Epub 2012 Aug 6.
454 The importance of a sub-region on chromosome 19q13.3 for prognosis of multiple myeloma patients after high-dose treatment and stem cell support: a linkage disequilibrium mapping in RAI and CD3EAP.Ann Hematol. 2011 Jun;90(6):675-84. doi: 10.1007/s00277-010-1105-z. Epub 2010 Nov 3.
455 MiRNA-29a as a tumor suppressor mediates PRIMA-1Met-induced anti-myeloma activity by targeting c-Myc.Oncotarget. 2016 Feb 9;7(6):7149-60. doi: 10.18632/oncotarget.6880.
456 Expression of RAN, ZHX-2, and CHC1L genes in multiple myeloma patients and in myeloma cell lines treated with HDAC and Dnmts inhibitors.Neoplasma. 2010;57(5):482-7. doi: 10.4149/neo_2010_05_482.
457 Unraveling the Prenylation-Cancer Paradox in Multiple Myeloma with Novel Geranylgeranyl Pyrophosphate Synthase (GGPPS) Inhibitors.J Med Chem. 2018 Aug 9;61(15):6904-6917. doi: 10.1021/acs.jmedchem.8b00886. Epub 2018 Jul 25.
458 Resistin induces multidrug resistance in myeloma by inhibiting cell death and upregulating ABC transporter expression.Haematologica. 2017 Jul;102(7):1273-1280. doi: 10.3324/haematol.2016.154062. Epub 2017 Mar 30.
459 Whole Genome Sequence of Multiple Myeloma-Prone C57BL/KaLwRij Mouse Strain Suggests the Origin of Disease Involves Multiple Cell Types.PLoS One. 2015 May 28;10(5):e0127828. doi: 10.1371/journal.pone.0127828. eCollection 2015.
460 Inhibitors of BTK and ITK: state of the new drugs for cancer, autoimmunity and inflammatory diseases.Scand J Immunol. 2013 Aug;78(2):130-9. doi: 10.1111/sji.12069.
461 Enrichment of B cell receptor signaling and epidermal growth factor receptor pathways in monoclonal gammopathy of undetermined significance: a genome-wide genetic interaction study.Mol Med. 2018 Jun 11;24(1):30. doi: 10.1186/s10020-018-0031-8.
462 Sclerostin is overexpressed by plasma cells from multiple myeloma patients.Ann N Y Acad Sci. 2011 Nov;1237:19-23. doi: 10.1111/j.1749-6632.2011.06196.x.
463 The clinical value of the quantitative detection of four cancer-testis antigen genes in multiple myeloma.Mol Cancer. 2014 Feb 5;13:25. doi: 10.1186/1476-4598-13-25.
464 Orai1 and Stim1 Mediate the Majority of Store-Operated Calcium Entry in Multiple Myeloma and Have Strong Implications for Adverse Prognosis.Cell Physiol Biochem. 2018;48(6):2273-2285. doi: 10.1159/000492645. Epub 2018 Aug 16.
465 TCL1 oncogene expression in B cell subsets from lymphoid hyperplasia and distinct classes of B cell lymphoma.Lab Invest. 2001 Apr;81(4):555-64. doi: 10.1038/labinvest.3780264.
466 p53-related protein kinase confers poor prognosis and represents a novel therapeutic target in multiple myeloma.Blood. 2017 Mar 9;129(10):1308-1319. doi: 10.1182/blood-2016-09-738500. Epub 2017 Jan 12.
467 LncRNA H19 overexpression induces bortezomib resistance in multiple myeloma by targeting MCL-1 via miR-29b-3p.Cell Death Dis. 2019 Feb 6;10(2):106. doi: 10.1038/s41419-018-1219-0.
468 Downregulation of DCC sensitizes multiple myeloma cells to bortezomib treatment.Mol Med Rep. 2019 Jun;19(6):5023-5029. doi: 10.3892/mmr.2019.10142. Epub 2019 Apr 9.
469 EPS8-mediated regulation of multiple myeloma cell growth and survival.Am J Cancer Res. 2019 Aug 1;9(8):1622-1634. eCollection 2019.
470 Difference in megakaryocyte expression of GATA-1, IL-6, and IL-8 associated with maintenance of platelet counts in patients with plasma cell neoplasm with dysmegakaryopoiesis.Exp Hematol. 2019 May;73:13-17.e2. doi: 10.1016/j.exphem.2019.02.005. Epub 2019 Feb 27.
471 The emerging role for Cullin 4 family of E3 ligases in tumorigenesis.Biochim Biophys Acta Rev Cancer. 2019 Jan;1871(1):138-159. doi: 10.1016/j.bbcan.2018.11.007. Epub 2018 Dec 30.
472 Formononetin Regulates Multiple Oncogenic Signaling Cascades and Enhances Sensitivity to Bortezomib in a Multiple Myeloma Mouse Model.Biomolecules. 2019 Jul 7;9(7):262. doi: 10.3390/biom9070262.
473 Zinc-dependent Deacetylase (HDAC) Inhibitors with Different Zinc Binding Groups.Curr Top Med Chem. 2019;19(3):223-241. doi: 10.2174/1568026619666190122144949.
474 miR-22 suppresses DNA ligase III addiction in multiple myeloma.Leukemia. 2019 Feb;33(2):487-498. doi: 10.1038/s41375-018-0238-2. Epub 2018 Aug 17.
475 Activation of liver X receptor up-regulates the expression of the NKG2D ligands MICA and MICB in multiple myeloma through different molecular mechanisms.FASEB J. 2019 Aug;33(8):9489-9504. doi: 10.1096/fj.201900319R. Epub 2019 May 24.
476 Multimodal Bioluminescent and Positronic-emission Tomography/Computational Tomography Imaging of Multiple Myeloma Bone Marrow Xenografts in NOG Mice.J Vis Exp. 2019 Jan 7;(143):10.3791/58056. doi: 10.3791/58056.
477 Tuning isoform selectivity and bortezomib sensitivity with a new class of alkenyl indene PDI inhibitor.Eur J Med Chem. 2020 Jan 15;186:111906. doi: 10.1016/j.ejmech.2019.111906. Epub 2019 Nov 21.
478 I-BET151 suppresses osteoclast formation and inflammatory cytokines secretion by targetting BRD4 in multiple myeloma.Biosci Rep. 2019 May 14;39(5):BSR20181245. doi: 10.1042/BSR20181245. Print 2019 May 31.
479 MiR-9 promotes multiple myeloma progression by regulating TRIM56/NF-B pathway.Cell Biol Int. 2019 Nov;43(11):1223-1233. doi: 10.1002/cbin.11104. Epub 2019 Jul 17.
480 Role of apurinic/apyrimidinic nucleases in the regulation of homologous recombination in myeloma: mechanisms and translational significance.Blood Cancer J. 2018 Sep 25;8(10):92. doi: 10.1038/s41408-018-0129-9.
481 Endogenous APOBEC3B Overexpression Constitutively Generates DNA Substitutions and Deletions in Myeloma Cells.Sci Rep. 2019 May 9;9(1):7122. doi: 10.1038/s41598-019-43575-y.
482 ARNT/HIF-1 links high-risk 1q21 gain and microenvironmental hypoxia to drug resistance and poor prognosis in multiple myeloma.Cancer Med. 2018 Aug;7(8):3899-3911. doi: 10.1002/cam4.1596. Epub 2018 Jun 21.
483 Differential expression of serum proteins in multiple myeloma.Exp Ther Med. 2019 Jan;17(1):649-656. doi: 10.3892/etm.2018.7010. Epub 2018 Nov 23.
484 The Expression of Actin-Related Protein 2/3 Complex Subunit 5 (ARPC5) Expression in Multiple Myeloma and its Prognostic Significance.Med Sci Monit. 2018 Sep 11;24:6340-6348. doi: 10.12659/MSM.908944.
485 Prediction and prognostic significance of BCAR3 expression in patients with multiple myeloma.J Transl Med. 2018 Dec 18;16(1):363. doi: 10.1186/s12967-018-1728-8.
486 Transcriptomic profiling of the myeloma bone-lining niche reveals BMP signalling inhibition to improve bone disease.Nat Commun. 2019 Oct 4;10(1):4533. doi: 10.1038/s41467-019-12296-1.
487 MicroRNA-324-5p suppresses the migration and invasion of MM cells by inhibiting the SCF(-TrCP) E3 ligase.Oncol Lett. 2018 Oct;16(4):5331-5338. doi: 10.3892/ol.2018.9245. Epub 2018 Aug 1.
488 Downregulation of miRNA-15a and miRNA-16 promote tumor proliferation in multiple myeloma by increasing CABIN1 expression.Oncol Lett. 2018 Jan;15(1):1287-1296. doi: 10.3892/ol.2017.7424. Epub 2017 Nov 15.
489 MicroRNA-532 exerts oncogenic functions in t(4;14) multiple myeloma by targeting CAMK2N1.Hum Cell. 2019 Oct;32(4):529-539. doi: 10.1007/s13577-019-00276-y. Epub 2019 Aug 26.
490 The Genetic Polymorphisms of NLRP3 Inflammasome Associated with T Helper Cells in Patients with Multiple Myeloma.J Immunol Res. 2018 Aug 23;2018:7569809. doi: 10.1155/2018/7569809. eCollection 2018.
491 B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma.J Clin Invest. 2019 Mar 21;129(6):2210-2221. doi: 10.1172/JCI126397.
492 Immune marker changes and risk of multiple myeloma: a nested case-control study using repeated pre-diagnostic blood samples.Haematologica. 2019 Dec;104(12):2456-2464. doi: 10.3324/haematol.2019.216895. Epub 2019 Apr 4.
493 Bortezomib restores stroma-mediated APO2L/TRAIL apoptosis resistance in multiple myeloma. Eur J Haematol. 2010 Mar;84(3):212-22. doi: 10.1111/j.1600-0609.2009.01381.x. Epub 2009 Nov 17.
494 Myeloma Cells Are Activated in Bone Marrow Microenvironment by the CD180/MD-1 Complex, Which Senses Lipopolysaccharide.Cancer Res. 2018 Apr 1;78(7):1766-1778. doi: 10.1158/0008-5472.CAN-17-2446. Epub 2018 Jan 23.
495 Expression analysis of two SLAM family receptors, SLAMF2 and SLAMF7, in patients with multiple myeloma.Int J Hematol. 2019 Jul;110(1):69-76. doi: 10.1007/s12185-019-02649-3. Epub 2019 May 21.
496 Visualizing collagen proteolysis by peptide hybridization: From 3D cell culture to in vivo imaging.Biomaterials. 2018 Nov;183:67-76. doi: 10.1016/j.biomaterials.2018.08.039. Epub 2018 Aug 22.
497 ClC5 Decreases the Sensitivity of Multiple Myeloma Cells to Bortezomib via Promoting Prosurvival Autophagy.Oncol Res. 2018 Apr 10;26(3):421-429. doi: 10.3727/096504017X15049221237147. Epub 2017 Sep 11.
498 Hypoxia-inducible microRNA-210 regulates the DIMT1-IRF4 oncogenic axis in multiple myeloma.Cancer Sci. 2017 Apr;108(4):641-652. doi: 10.1111/cas.13183. Epub 2017 Apr 20.
499 Synthesis, Computational Docking Study, and Biological Evaluation of a Library of Heterocyclic Curcuminoids with Remarkable Antitumor Activity.ChemMedChem. 2018 Sep 19;13(18):1895-1908. doi: 10.1002/cmdc.201800320. Epub 2018 Aug 5.
500 Targeting complete response with upfront bortezomib consolidation versus observation after the achievement of complete response following autologous transplantation for multiple myeloma (TUBA study).Hematol Oncol. 2018 Feb;36(1):202-209. doi: 10.1002/hon.2452. Epub 2017 Jul 6.
501 Wnt and BMP signaling pathways co-operatively induce the differentiation of multiple myeloma mesenchymal stem cells into osteoblasts by upregulating EMX2.J Cell Biochem. 2019 Apr;120(4):6515-6527. doi: 10.1002/jcb.27942. Epub 2018 Nov 18.
502 Nucleotide excision repair is a potential therapeutic target in multiple myeloma.Leukemia. 2018 Jan;32(1):111-119. doi: 10.1038/leu.2017.182. Epub 2017 Jun 7.
503 Epigenetic silencing of EVL/miR-342 in multiple myeloma.Transl Res. 2018 Feb;192:46-53. doi: 10.1016/j.trsl.2017.11.005. Epub 2017 Nov 23.
504 The hydroxymethylome of multiple myeloma identifies FAM72D as a 1q21 marker linked to proliferation.Haematologica. 2020 Mar;105(3):774-783. doi: 10.3324/haematol.2019.222133. Epub 2019 Jun 20.
505 Novel flavagline-like compounds with potent Fli-1 inhibitory activity suppress diverse types of leukemia.FEBS J. 2018 Dec;285(24):4631-4645. doi: 10.1111/febs.14690. Epub 2018 Nov 20.
506 GENESIS: Phase III trial evaluating BL-8040+G-CSF to mobilize hematopoietic cells for autologous transplant in myeloma.Future Oncol. 2019 Nov;15(31):3555-3563. doi: 10.2217/fon-2019-0380. Epub 2019 Sep 9.
507 Granulysin, a novel marker for extranodal NK/T cell lymphoma, nasal type.Virchows Arch. 2018 Dec;473(6):749-757. doi: 10.1007/s00428-018-2434-x. Epub 2018 Aug 27.
508 Intermediate-dose cytarabine plus G-CSF as mobilization regimen for newly diagnosed multiple myeloma and heavily pre-treated patients with hematological and non-hematological malignancies.Transfus Apher Sci. 2019 Jun;58(3):318-322. doi: 10.1016/j.transci.2019.03.018. Epub 2019 Mar 29.
509 Hyaluronan and proteoglycan link protein 1 (HAPLN1) activates bortezomib-resistant NF-B activity and increases drug resistance in multiple myeloma.J Biol Chem. 2018 Feb 16;293(7):2452-2465. doi: 10.1074/jbc.RA117.000667. Epub 2017 Dec 26.
510 Long non-coding RNA CCAT1 promotes multiple myeloma progression by acting as a molecular sponge of miR-181a-5p to modulate HOXA1 expression.Cell Cycle. 2018;17(3):319-329. doi: 10.1080/15384101.2017.1407893. Epub 2018 Jan 29.
511 HOXC10 Regulates Osteogenesis of Mesenchymal Stromal Cells Through Interaction with Its Natural Antisense Transcript lncHOXC-AS3.Stem Cells. 2019 Feb;37(2):247-256. doi: 10.1002/stem.2925. Epub 2018 Dec 2.
512 A multiple myeloma-specific capture sequencing platform discovers novel translocations and frequent, risk-associated point mutations in IGLL5.Blood Cancer J. 2018 Mar 21;8(3):35. doi: 10.1038/s41408-018-0062-y.
513 A role for IL-34 in osteolytic disease of multiple myeloma.Blood Adv. 2019 Feb 26;3(4):541-551. doi: 10.1182/bloodadvances.2018020008.
514 Search for rare protein altering variants influencing susceptibility to multiple myeloma.Oncotarget. 2017 May 30;8(22):36203-36210. doi: 10.18632/oncotarget.15874.
515 Regions of homozygosity as risk factors for multiple myeloma.Ann Hum Genet. 2019 Jul;83(4):231-238. doi: 10.1111/ahg.12304. Epub 2019 Feb 15.
516 Circulating CD3(+)CD4(+)CD161(+) Cells Are Associated with Early Complications after Autologous Stem Cell Transplantation in Multiple Myeloma.Biomed Res Int. 2018 Jan 1;2018:5097325. doi: 10.1155/2018/5097325. eCollection 2018.
517 Cereblon-binding proteins expression levels correlate with hyperdiploidy in newly diagnosed multiple myeloma patients.Blood Cancer J. 2019 Jan 29;9(2):13. doi: 10.1038/s41408-019-0174-z.
518 Focusing on long non-coding RNA dysregulation in newly diagnosed multiple myeloma.Life Sci. 2018 Mar 1;196:133-142. doi: 10.1016/j.lfs.2018.01.025. Epub 2018 Feb 3.
519 Genetic variants of NHEJ DNA ligase IV can affect the risk of developing multiple myeloma, a tumour characterised by aberrant class switch recombination.J Med Genet. 2002 Dec;39(12):900-5. doi: 10.1136/jmg.39.12.900.
520 The multiple myeloma risk allele at 5q15 lowers ELL2 expression and increases ribosomal gene expression.Nat Commun. 2018 Apr 25;9(1):1649. doi: 10.1038/s41467-018-04082-2.
521 A Phase Ib/II Study of Oprozomib in Patients with Advanced Multiple Myeloma and Waldenstrm Macroglobulinemia.Clin Cancer Res. 2019 Aug 15;25(16):4907-4916. doi: 10.1158/1078-0432.CCR-18-3728. Epub 2019 May 29.
522 Young female patients with multiple myeloma have low occurrence of osteolytic lesion.Bone. 2018 May;110:21-28. doi: 10.1016/j.bone.2018.01.021. Epub 2018 Feb 3.
523 MAX is an epigenetic sensor of 5-carboxylcytosine and is altered in multiple myeloma.Nucleic Acids Res. 2017 Mar 17;45(5):2396-2407. doi: 10.1093/nar/gkw1184.
524 Management of Newly Diagnosed Elderly Multiple Myeloma Patients.Curr Oncol Rep. 2019 May 24;21(7):64. doi: 10.1007/s11912-019-0804-4.
525 Synergistic effects of rmhTRAIL and 17-AAG on the proliferation and apoptosis of multiple myeloma cells.Hematology. 2018 Oct;23(9):620-625. doi: 10.1080/10245332.2018.1449338. Epub 2018 Mar 22.
526 MS4A4A: a novel cell surface marker for M2 macrophages and plasma cells.Immunol Cell Biol. 2017 Aug;95(7):611-619. doi: 10.1038/icb.2017.18. Epub 2017 Mar 17.
527 Constraints on signaling network logic reveal functional subgraphs on Multiple Myeloma OMIC data.BMC Syst Biol. 2018 Mar 21;12(Suppl 3):32. doi: 10.1186/s12918-018-0551-4.
528 Aberrant hyperediting of the myeloma transcriptome by ADAR1 confers oncogenicity and is a marker of poor prognosis.Blood. 2018 Sep 20;132(12):1304-1317. doi: 10.1182/blood-2018-02-832576. Epub 2018 Jul 30.
529 Breast cancer and synchronous multiple myeloma as a diagnostic challenge: Case report and review of literature.Curr Probl Cancer. 2018 Mar-Apr;42(2):231-234. doi: 10.1016/j.currproblcancer.2017.11.001. Epub 2017 Nov 22.
530 Human MutT homologue 1 mRNA overexpression correlates to poor response of multiple myeloma.Int J Hematol. 2017 Mar;105(3):318-325. doi: 10.1007/s12185-016-2139-3. Epub 2016 Nov 15.
531 High expression of nucleoporin 133 mRNA in bone marrow CD138+ cells is a poor prognostic factor in multiple myeloma.Oncotarget. 2018 May 18;9(38):25127-25135. doi: 10.18632/oncotarget.25350. eCollection 2018 May 18.
532 Knockdown of NUPR1 inhibits the growth of U266 and RPMI8226 multiple myeloma cell lines via activating PTEN and caspase activationdependent apoptosis.Oncol Rep. 2018 Sep;40(3):1487-1494. doi: 10.3892/or.2018.6544. Epub 2018 Jul 4.
533 Citrullination of histone H3 drives IL-6 production by bone marrow mesenchymal stem cells in MGUS and multiple myeloma.Leukemia. 2017 Feb;31(2):373-381. doi: 10.1038/leu.2016.187. Epub 2016 Jul 11.
534 Profilin 1 induces drug resistance through Beclin1 complex-mediated autophagy in multiple myeloma.Cancer Sci. 2018 Sep;109(9):2706-2716. doi: 10.1111/cas.13711. Epub 2018 Jul 27.
535 PHF19 promotes multiple myeloma tumorigenicity through PRC2 activation and broad H3K27me3 domain formation.Blood. 2019 Oct 3;134(14):1176-1189. doi: 10.1182/blood.2019000578. Epub 2019 Aug 5.
536 The transmembrane protein TMEPAI induces myeloma cell apoptosis by promoting degradation of the c-Maf transcription factor.J Biol Chem. 2018 Apr 20;293(16):5847-5859. doi: 10.1074/jbc.RA117.000972. Epub 2018 Feb 21.
537 Saposin C is a frequent target of paraproteins in Gaucher disease-associated MGUS/multiple myeloma.Br J Haematol. 2019 Feb;184(3):384-391. doi: 10.1111/bjh.15659. Epub 2018 Nov 18.
538 Proinflammatory Macrophages Promote Multiple Myeloma Resistance to Bortezomib Therapy.Mol Cancer Res. 2019 Nov;17(11):2331-2340. doi: 10.1158/1541-7786.MCR-19-0487. Epub 2019 Aug 13.
539 Exosome-Transmitted PSMA3 and PSMA3-AS1 Promote Proteasome Inhibitor Resistance in Multiple Myeloma.Clin Cancer Res. 2019 Mar 15;25(6):1923-1935. doi: 10.1158/1078-0432.CCR-18-2363. Epub 2019 Jan 4.
540 Knockdown of REG inhibits the proliferation and migration and promotes the apoptosis of multiple myeloma cells by downregulating NF-B signal pathway.Hematology. 2018 Jun;23(5):277-283. doi: 10.1080/10245332.2017.1385194. Epub 2017 Oct 11.
541 GFR estimation in lenalidomide treatment of multiple myeloma patients: a prospective cohort study.Clin Exp Nephrol. 2019 Feb;23(2):199-206. doi: 10.1007/s10157-018-1626-7. Epub 2018 Aug 20.
542 Loss of RASSF4 Expression in Multiple Myeloma Promotes RAS-Driven Malignant Progression.Cancer Res. 2018 Mar 1;78(5):1155-1168. doi: 10.1158/0008-5472.CAN-17-1544. Epub 2017 Dec 19.
543 Prognosis value of RBBP8 expression in plasma cell myeloma.Cancer Gene Ther. 2020 Feb;27(1-2):22-29. doi: 10.1038/s41417-018-0069-3. Epub 2019 Jan 9.
544 Hypoxia-induced long non-coding RNA DARS-AS1 regulates RBM39 stability to promote myeloma malignancy.Haematologica. 2020 Jun;105(6):1630-1640. doi: 10.3324/haematol.2019.218289. Epub 2019 Jul 9.
545 Dysregulation of EZH2/miR-138 axis contributes to drug resistance in multiple myeloma by downregulating RBPMS.Leukemia. 2018 Nov;32(11):2471-2482. doi: 10.1038/s41375-018-0140-y. Epub 2018 Apr 24.
546 Pirh2 mediates the sensitivity of myeloma cells to bortezomib via canonical NF-B signaling pathway.Protein Cell. 2018 Sep;9(9):770-784. doi: 10.1007/s13238-017-0500-9. Epub 2018 Feb 13.
547 RECQ1 helicase is involved in replication stress survival and drug resistance in multiple myeloma.Leukemia. 2017 Oct;31(10):2104-2113. doi: 10.1038/leu.2017.54. Epub 2017 Feb 10.
548 RGS1 expression is associated with poor prognosis in multiple myeloma.J Clin Pathol. 2017 Mar;70(3):202-207. doi: 10.1136/jclinpath-2016-203713. Epub 2016 Jul 21.
549 The small GTPase RhoU lays downstream of JAK/STAT signaling and mediates cell migration in multiple myeloma.Blood Cancer J. 2018 Feb 13;8(2):20. doi: 10.1038/s41408-018-0053-z.
550 High Expression Levels of Long Noncoding RNA Small Nucleolar RNA Host Gene 18 and Semaphorin 5A Indicate Poor Prognosis in Multiple Myeloma.Acta Haematol. 2020;143(3):279-288. doi: 10.1159/000502404. Epub 2019 Oct 9.
551 Clodronate-Liposome Mediated Macrophage Depletion Abrogates Multiple Myeloma Tumor Establishment In Vivo.Neoplasia. 2019 Aug;21(8):777-787. doi: 10.1016/j.neo.2019.05.006. Epub 2019 Jun 24.
552 Circ-SMARCA5 suppresses progression of multiple myeloma by targeting miR-767-5p.BMC Cancer. 2019 Oct 10;19(1):937. doi: 10.1186/s12885-019-6088-0.
553 Sostdc1: A soluble BMP and Wnt antagonist that is induced by the interaction between myeloma cells and osteoblast lineage cells.Bone. 2019 May;122:82-92. doi: 10.1016/j.bone.2019.02.012. Epub 2019 Feb 15.
554 NEAT1 promotes cell proliferation in multiple myeloma by activating PI3K/AKT pathway.Eur Rev Med Pharmacol Sci. 2018 Oct;22(19):6403-6411. doi: 10.26355/eurrev_201810_16053.
555 MicroRNA-765 is pregulated in multiple myeloma and serves an oncogenic role by directly targeting SOX6.Exp Ther Med. 2019 Jun;17(6):4741-4747. doi: 10.3892/etm.2019.7473. Epub 2019 Apr 10.
556 Thiasyrbactins Induce Cell Death via Proteasome Inhibition in Multiple Myeloma Cells.Anticancer Res. 2018 Oct;38(10):5607-5613. doi: 10.21873/anticanres.12895.
557 The mechanism of SP1/p300 complex promotes proliferation of multiple myeloma cells through regulating IQGAP1 transcription.Biomed Pharmacother. 2019 Nov;119:109434. doi: 10.1016/j.biopha.2019.109434. Epub 2019 Sep 16.
558 Identification of miRSNPs associated with the risk of multiple myeloma.Int J Cancer. 2017 Feb 1;140(3):526-534. doi: 10.1002/ijc.30465. Epub 2016 Nov 9.
559 Assessment of TP53 lesions for p53 system functionality and drug resistance in multiple myeloma using an isogenic cell line model.Sci Rep. 2019 Dec 2;9(1):18062. doi: 10.1038/s41598-019-54407-4.
560 PMN-MDSC and arginase are increased in myeloma and may contribute to resistance to therapy.Expert Rev Mol Diagn. 2018 Jul;18(7):675-683. doi: 10.1080/14737159.2018.1470929. Epub 2018 May 3.
561 TRIM13 inhibited cell proliferation and induced cell apoptosis by regulating NF-B pathway in non-small-cell lung carcinoma cells.Gene. 2019 Oct 5;715:144015. doi: 10.1016/j.gene.2019.144015. Epub 2019 Jul 26.
562 Nitroxoline shows antimyeloma activity by targeting the TRIM25/p53 axle.Anticancer Drugs. 2017 Apr;28(4):376-383. doi: 10.1097/CAD.0000000000000466.
563 Expression of p170 protein in multiple myeloma: a clinical study.Hematol Oncol. 1992 May-Aug;10(3-4):213-20. doi: 10.1002/hon.2900100312.
564 Che-1 gene silencing induces osteosarcoma cell apoptosis by inhibiting mutant p53 expression.Biochem Biophys Res Commun. 2016 Apr 22;473(1):168-173. doi: 10.1016/j.bbrc.2016.03.073. Epub 2016 Mar 21.
565 BCL-6 gene mutations in posttransplantation lymphoproliferative disorders predict response to therapy and clinical outcome.Blood. 1998 Oct 1;92(7):2294-302.
566 DCZ0814 induces apoptosis and G0/G1 phase cell cycle arrest in myeloma by dual inhibition of mTORC1/2.Cancer Manag Res. 2019 May 27;11:4797-4808. doi: 10.2147/CMAR.S194202. eCollection 2019.
567 IL6R-STAT3-ADAR1 (P150) interplay promotes oncogenicity in multiple myeloma with 1q21 amplification.Haematologica. 2020 May;105(5):1391-1404. doi: 10.3324/haematol.2019.221176. Epub 2019 Aug 14.
568 Expression of the cereblon binding protein argonaute 2 plays an important role for multiple myeloma cell growth and survival.BMC Cancer. 2016 May 3;16:297. doi: 10.1186/s12885-016-2331-0.
569 Selective expression of CD45 isoforms defines CALLA+ monoclonal B-lineage cells in peripheral blood from myeloma patients as late stage B cells.Blood. 1991 Aug 1;78(3):711-9.
570 Urinary excretion of low molecular weight proteins in patients with pure monoclonal light chain proteinuria.J Nephrol. 2007 Nov-Dec;20(6):683-8.
571 Host genetic susceptibility to Clostridium difficile infections in patients undergoing autologous stem cell transplantation: a genome-wide association study.Support Care Cancer. 2018 Sep;26(9):3127-3134. doi: 10.1007/s00520-018-4173-6. Epub 2018 Mar 28.
572 Scutellarein selectively targets multiple myeloma cells by increasing mitochondrial superoxide production and activating intrinsic apoptosis pathway.Biomed Pharmacother. 2019 Jan;109:2109-2118. doi: 10.1016/j.biopha.2018.09.024. Epub 2018 Nov 26.
573 Endogenous transmembrane protein UT2 inhibits pSTAT3 and suppresses hematological malignancy.J Clin Invest. 2016 Apr 1;126(4):1300-10. doi: 10.1172/JCI84620. Epub 2016 Feb 29.
574 Genomic hypomethylation in human chronic lymphocytic leukemia.Blood. 1992 Oct 15;80(8):2074-80.
575 Compromising the unfolded protein response induces autophagy-mediated cell death in multiple myeloma cells.PLoS One. 2011;6(10):e25820. doi: 10.1371/journal.pone.0025820. Epub 2011 Oct 18.
576 Genome-wide association study identifies multiple susceptibility loci for multiple myeloma.Nat Commun. 2016 Jul 1;7:12050. doi: 10.1038/ncomms12050.
577 A novel xenograft mouse model for testing approaches targeting human kappa light-chain diseases.Gene Ther. 2019 May;26(5):187-197. doi: 10.1038/s41434-019-0070-y. Epub 2019 Mar 29.
578 Loss of p53 exacerbates multiple myeloma phenotype by facilitating the reprogramming of hematopoietic stem/progenitor cells to malignant plasma cells by MafB.Cell Cycle. 2012 Oct 15;11(20):3896-900. doi: 10.4161/cc.22186. Epub 2012 Sep 14.
579 Host-related immunodeficiency in the development of multiple myeloma.Leuk Lymphoma. 2018 May;59(5):1127-1132. doi: 10.1080/10428194.2017.1361026. Epub 2017 Aug 9.
580 Human leukocyte antigen-B-associated transcript 3 is released from tumor cells and engages the NKp30 receptor on natural killer cells.Immunity. 2007 Dec;27(6):965-74. doi: 10.1016/j.immuni.2007.10.010. Epub 2007 Dec 6.
581 Erucylphospho-N,N,N-trimethylpropylammonium (erufosine) is a potential antimyeloma drug devoid of myelotoxicity.Cancer Chemother Pharmacol. 2011 Jan;67(1):13-25. doi: 10.1007/s00280-010-1273-5. Epub 2010 Feb 23.
582 Bcl-B expression in human epithelial and nonepithelial malignancies.Clin Cancer Res. 2008 May 15;14(10):3011-21. doi: 10.1158/1078-0432.CCR-07-1955.
583 High expression of BCL3 in human myeloma cells is associated with increased proliferation and inferior prognosis.Eur J Haematol. 2009 May;82(5):354-63. doi: 10.1111/j.1600-0609.2009.01225.x. Epub 2009 Jan 13.
584 Expression profiling of in vivo ductal carcinoma in situ progression models identified B cell lymphoma-9 as a molecular driver of breast cancer invasion.Breast Cancer Res. 2015 Sep 17;17:128. doi: 10.1186/s13058-015-0630-z.
585 Body size and obesity during adulthood, and risk of lympho-haematopoietic cancers: an update of the WCRF-AICR systematic review of published prospective studies.Ann Oncol. 2019 Apr 1;30(4):528-541. doi: 10.1093/annonc/mdz045.
586 Transcription factor MIST1 in terminal differentiation of mouse and human plasma cells.Physiol Genomics. 2011 Feb 11;43(3):174-86. doi: 10.1152/physiolgenomics.00084.2010. Epub 2010 Nov 23.
587 Expression, adverse prognostic significance and therapeutic small molecule inhibition of Polo-like kinase 1 in multiple myeloma.Leuk Res. 2011 Dec;35(12):1637-43. doi: 10.1016/j.leukres.2011.07.016. Epub 2011 Aug 3.
588 CS1 promotes multiple myeloma cell adhesion, clonogenic growth, and tumorigenicity via c-maf-mediated interactions with bone marrow stromal cells.Blood. 2009 Apr 30;113(18):4309-18. doi: 10.1182/blood-2008-10-183772. Epub 2009 Feb 4.
589 Measuring cereblon as a biomarker of response or resistance to lenalidomide and pomalidomide requires use of standardized reagents and understanding of gene complexity.Br J Haematol. 2014 Jan;164(2):233-44. doi: 10.1111/bjh.12622. Epub 2013 Oct 28.
590 Overcoming immune tolerance against multiple myeloma with lentiviral calnexin-engineered dendritic cells.Mol Ther. 2008 Feb;16(2):269-79. doi: 10.1038/sj.mt.6300369. Epub 2007 Dec 11.
591 Cost-Effectiveness of Novel Agents in Medicare Patients with Multiple Myeloma: Findings from a U.S. Payer's Perspective.J Manag Care Spec Pharm. 2017 Aug;23(8):831-843. doi: 10.18553/jmcp.2017.23.8.831.
592 A novel interaction between fibroblast growth factor receptor 3 and the p85 subunit of phosphoinositide 3-kinase: activation-dependent regulation of ERK by p85 in multiple myeloma cells.Hum Mol Genet. 2009 Jun 1;18(11):1951-61. doi: 10.1093/hmg/ddp116. Epub 2009 Mar 13.
593 The cancer-testis antigen, sperm protein 17, a new biomarker and immunological target in head and neck squamous cell carcinoma.Oncotarget. 2017 Oct 31;8(59):100280-100287. doi: 10.18632/oncotarget.22213. eCollection 2017 Nov 21.
594 CCR10/CCL27 crosstalk contributes to failure of proteasome-inhibitors in multiple myeloma.Oncotarget. 2016 Nov 29;7(48):78605-78618. doi: 10.18632/oncotarget.12522.
595 Prediction of outcome in newly diagnosed myeloma: a meta-analysis of the molecular profiles of 1905 trial patients.Leukemia. 2018 Jan;32(1):102-110. doi: 10.1038/leu.2017.179. Epub 2017 Jun 6.
596 Regulation of multiple myeloma survival and progression by CD1d.Blood. 2009 Mar 12;113(11):2498-507. doi: 10.1182/blood-2008-06-161281. Epub 2008 Dec 3.
597 Key Role of the CD56(low)CD16(low) Natural Killer Cell Subset in the Recognition and Killing of Multiple Myeloma Cells.Cancers (Basel). 2018 Nov 29;10(12):473. doi: 10.3390/cancers10120473.
598 An unusual presentation of multiple myeloma with unilateral sudden vision loss: A case report.Medicine (Baltimore). 2017 Jun;96(25):e7277. doi: 10.1097/MD.0000000000007277.
599 Expression of CD81 and CD117 in plasma cell myeloma and the relationship to prognosis.Cancer Med. 2018 Dec;7(12):5920-5927. doi: 10.1002/cam4.1840. Epub 2018 Oct 24.
600 Tetraspanins affect myeloma cell fate via Akt signaling and FoxO activation.Cell Signal. 2008 Dec;20(12):2309-16. doi: 10.1016/j.cellsig.2008.08.018. Epub 2008 Aug 31.
601 Multiple myeloma risk variant at 7p15.3 creates an IRF4-binding site and interferes with CDCA7L expression.Nat Commun. 2016 Nov 24;7:13656. doi: 10.1038/ncomms13656.
602 Epigenetic dysregulation of the death-associated protein kinase/p14/HDM2/p53/Apaf-1 apoptosis pathway in multiple myeloma. J Clin Pathol. 2007 Jun;60(6):664-9. doi: 10.1136/jcp.2006.038331.
603 Alterations of the cyclin-dependent kinase inhibitor p19 (INK4D) is rare in hematopoietic malignancies.Leukemia. 1996 Dec;10(12):1897-900.
604 Identification of an ABCB1 (P-glycoprotein)-positive carfilzomib-resistant myeloma subpopulation by the pluripotent stem cell fluorescent dye CDy1. Am J Hematol. 2013 Apr;88(4):265-72.
605 Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma.Nat Commun. 2018 Sep 13;9(1):3707. doi: 10.1038/s41467-018-04989-w.
606 A novel BCMA/CD3 bispecific T-cell engager for the treatment of multiple myeloma induces selective lysis in vitro and in vivo.Leukemia. 2017 Aug;31(8):1743-1751. doi: 10.1038/leu.2016.388. Epub 2016 Dec 27.
607 Cell adhesion induces overexpression of chromodomain helicase/ATPase DNA binding protein 1-like gene (CHD1L) and contributes to cell adhesion-mediated drug resistance (CAM-DR) in multiple myeloma cells.Leuk Res. 2016 Aug;47:54-62. doi: 10.1016/j.leukres.2016.05.007. Epub 2016 May 12.
608 Cytokine-induced apoptosis inhibitor 1 inhibits the growth and proliferation of multiple myeloma.Mol Med Rep. 2015 Aug;12(2):2056-62. doi: 10.3892/mmr.2015.3656. Epub 2015 Apr 22.
609 Regulation of cellular processes by interleukin-16 in homeostasis and cancer.J Cell Physiol. 2014 Feb;229(2):139-47. doi: 10.1002/jcp.24441.
610 MHC class II transactivator (CIITA) expression is upregulated in multiple myeloma cells by IFN-gamma.Mol Immunol. 2007 Apr;44(11):2923-32. doi: 10.1016/j.molimm.2007.01.009. Epub 2007 Feb 14.
611 Combinatorial efficacy of anti-CS1 monoclonal antibody elotuzumab (HuLuc63) and bortezomib against multiple myeloma.Mol Cancer Ther. 2009 Sep;8(9):2616-24. doi: 10.1158/1535-7163.MCT-09-0483. Epub 2009 Sep 1.
612 Expression of a buckwheat trypsin inhibitor gene in Escherichia coli and its effect on multiple myeloma IM-9 cell proliferation.Acta Biochim Biophys Sin (Shanghai). 2007 Sep;39(9):701-7. doi: 10.1111/j.1745-7270.2007.00332.x.
613 Caspase polymorphisms and genetic susceptibility to multiple myeloma.Hematol Oncol. 2008 Sep;26(3):148-51. doi: 10.1002/hon.852.
614 Non-covalent immunoproteasome inhibitors induce cell cycle arrest in multiple myeloma MM.1R cells.J Enzyme Inhib Med Chem. 2019 Dec;34(1):1307-1313. doi: 10.1080/14756366.2019.1594802.
615 CUL4A as a marker and potential therapeutic target in multiple myeloma.Tumour Biol. 2017 Jul;39(7):1010428317703923. doi: 10.1177/1010428317703923.
616 Promoter methylation induced epigenetic silencing of DAZAP2, a downstream effector of p38/MAPK pathway, in multiple myeloma cells.Cell Signal. 2019 Aug;60:136-145. doi: 10.1016/j.cellsig.2019.04.012. Epub 2019 Apr 26.
617 Effects of miR?81a on the biological function of multiple myeloma.Oncol Rep. 2019 Jul;42(1):291-300. doi: 10.3892/or.2019.7160. Epub 2019 May 15.
618 Modulation of cereblon levels by anti-myeloma agents.Leuk Lymphoma. 2016;57(1):167-76. doi: 10.3109/10428194.2015.1037752. Epub 2015 May 12.
619 Germline factor DDX4 functions in blood-derived cancer cell phenotypes.Cancer Sci. 2017 Aug;108(8):1612-1619. doi: 10.1111/cas.13299. Epub 2017 Jul 11.
620 A der(1;15)(q10;q10) is a rare nonrandom whole-arm translocation in patients with acute lymphoblastic leukemia.Cancer Genet Cytogenet. 2007 Dec;179(2):132-5. doi: 10.1016/j.cancergencyto.2007.08.008.
621 The RNA Exosome and Human Disease.Methods Mol Biol. 2020;2062:3-33. doi: 10.1007/978-1-4939-9822-7_1.
622 High-frequency promoter hypermethylation of the deleted in liver cancer-1 gene in multiple myeloma.J Clin Pathol. 2006 Sep;59(9):947-51. doi: 10.1136/jcp.2005.031377. Epub 2006 Feb 17.
623 Variants in ELL2 influencing immunoglobulin levels associate with multiple myeloma.Nat Commun. 2015 May 26;6:7213. doi: 10.1038/ncomms8213.
624 Effects of DTX3L on the cell proliferation, adhesion, and drug resistance of multiple myeloma cells.Tumour Biol. 2017 Jun;39(6):1010428317703941. doi: 10.1177/1010428317703941.
625 Cytogenetic data as a prognostic factor in multiple myeloma patients: involvement of 1p12 region an adverse prognostic factor.Anticancer Res. 2004 Nov-Dec;24(6):4141-6.
626 Eef1a2 promotes cell growth, inhibits apoptosis and activates JAK/STAT and AKT signaling in mouse plasmacytomas.PLoS One. 2010 May 21;5(5):e10755. doi: 10.1371/journal.pone.0010755.
627 Inhibition of eIF2alpha dephosphorylation maximizes bortezomib efficiency and eliminates quiescent multiple myeloma cells surviving proteasome inhibitor therapy.Cancer Res. 2009 Feb 15;69(4):1545-52. doi: 10.1158/0008-5472.CAN-08-3858. Epub 2009 Feb 3.
628 A new multiple myeloma cell line, MEF-1, possesses cyclin D1 overexpression and the p53 mutation.Cancer. 1999 Apr 15;85(8):1750-7. doi: 10.1002/(sici)1097-0142(19990415)85:8<1750::aid-cncr15>3.0.co;2-5.
629 A possible role for the loss of CD27-CD70 interaction in myelomagenesis.Br J Haematol. 2003 Jan;120(2):223-34. doi: 10.1046/j.1365-2141.2003.04069.x.
630 JS-K, a GST-activated nitric oxide generator, induces DNA double-strand breaks, activates DNA damage response pathways, and induces apoptosis in vitro and in vivo in human multiple myeloma cells.Blood. 2007 Jul 15;110(2):709-18. doi: 10.1182/blood-2006-10-052845. Epub 2007 Mar 23.
631 Panobinostat for the Treatment of Multiple Myeloma.Clin Cancer Res. 2015 Nov 1;21(21):4767-73. doi: 10.1158/1078-0432.CCR-15-0530. Epub 2015 Sep 11.
632 SCFFbxo9 and CK2 direct the cellular response to growth factor withdrawal via Tel2/Tti1 degradation and promote survival in multiple myeloma.Nat Cell Biol. 2013 Jan;15(1):72-81. doi: 10.1038/ncb2651.
633 PI3K/p110{delta} is a novel therapeutic target in multiple myeloma.Blood. 2010 Sep 2;116(9):1460-8. doi: 10.1182/blood-2009-06-222943. Epub 2010 May 26.
634 Phase I study of the anti-FcRH5 antibody-drug conjugate DFRF4539A in relapsed or refractory multiple myeloma.Blood Cancer J. 2019 Feb 4;9(2):17. doi: 10.1038/s41408-019-0178-8.
635 In vivo adhesion of malignant B cells to bone marrow microvasculature is regulated by 41 cytoplasmic-binding proteins.Leukemia. 2016 Apr;30(4):861-72. doi: 10.1038/leu.2015.332. Epub 2015 Dec 10.
636 Aberrant expression of the neuronal transcription factor FOXP2 in neoplastic plasma cells.Br J Haematol. 2010 Apr;149(2):221-30. doi: 10.1111/j.1365-2141.2009.08070.x. Epub 2010 Jan 20.
637 Expression of osteoblast and osteoclast regulatory genes in the bone marrow microenvironment in multiple myeloma: only up-regulation of Wnt inhibitors SFRP3 and DKK1 is associated with lytic bone disease.Leuk Lymphoma. 2014 Apr;55(4):911-9. doi: 10.3109/10428194.2013.820288. Epub 2013 Aug 5.
638 Engraftment of gene-marked hematopoietic progenitors in myeloma patients after transplant of autologous long-term marrow cultures.Hum Gene Ther. 1999 Aug 10;10(12):1953-64. doi: 10.1089/10430349950017310.
639 Identification potential biomarkers and therapeutic agents in multiple myeloma based on bioinformatics analysis.Eur Rev Med Pharmacol Sci. 2016 Mar;20(5):810-7.
640 Expression and chromosomal localization of the gene for the human transcriptional repressor GCF.J Biol Chem. 1992 Jan 25;267(3):1689-94.
641 MiRNAs with prognostic significance in multiple myeloma: A systemic review and meta-analysis.Medicine (Baltimore). 2019 Aug;98(33):e16711. doi: 10.1097/MD.0000000000016711.
642 Silencing of augmenter of liver regeneration inhibited cell proliferation and triggered apoptosis in U266 human multiple myeloma cells.Braz J Med Biol Res. 2017 Aug 31;50(10):e6139. doi: 10.1590/1414-431X20176139.
643 Growth factor independence 1 expression in myeloma cells enhances their growth, survival, and osteoclastogenesis.J Hematol Oncol. 2018 Oct 4;11(1):123. doi: 10.1186/s13045-018-0666-5.
644 In Vivo Evaluation of Isoprenoid Triazole Bisphosphonate Inhibitors of Geranylgeranyl Diphosphate Synthase: Impact of Olefin Stereochemistry on Toxicity and Biodistribution.J Pharmacol Exp Ther. 2019 Nov;371(2):327-338. doi: 10.1124/jpet.119.258624. Epub 2019 Aug 16.
645 Development and characterization of two human tumor sublines expressing high-grade resistance to the cyanoguanidine CHS 828.Anticancer Drugs. 2004 Jan;15(1):45-54. doi: 10.1097/00001813-200401000-00008.
646 A role for activator of G-protein signaling 3 (AGS3) in multiple myeloma.Int J Hematol. 2014 Jan;99(1):57-68. doi: 10.1007/s12185-013-1484-8. Epub 2013 Dec 5.
647 Inherited polymorphisms in hyaluronan synthase 1 predict risk of systemic B-cell malignancies but not of breast cancer.PLoS One. 2014 Jun 20;9(6):e100691. doi: 10.1371/journal.pone.0100691. eCollection 2014.
648 Characterization of hyaluronan synthase expression and hyaluronan synthesis in bone marrow mesenchymal progenitor cells: predominant expression of HAS1 mRNA and up-regulated hyaluronan synthesis in bone marrow cells derived from multiple myeloma patients.Blood. 2002 Oct 1;100(7):2578-85. doi: 10.1182/blood-2002-01-0030.
649 Multiple myeloma-derived Jagged ligands increases autocrine and paracrine interleukin-6 expression in bone marrow niche.Oncotarget. 2016 Aug 30;7(35):56013-56029. doi: 10.18632/oncotarget.10820.
650 Identification of human leucocyte antigen (HLA)-A*0201-restricted cytotoxic T lymphocyte epitopes derived from HLA-DO as a novel target for multiple myeloma.Br J Haematol. 2013 Nov;163(3):343-51. doi: 10.1111/bjh.12544. Epub 2013 Aug 30.
651 Molecular Characteristics of High-Dose Melphalan Associated Oral Mucositis in Patients with Multiple Myeloma: A Gene Expression Study on Human Mucosa.PLoS One. 2017 Jan 4;12(1):e0169286. doi: 10.1371/journal.pone.0169286. eCollection 2017.
652 Bortezomib sensitizes multiple myeloma to NK cells via ER-stress-induced suppression of HLA-E and upregulation of DR5.Oncoimmunology. 2018 Nov 2;8(2):e1534664. doi: 10.1080/2162402X.2018.1534664. eCollection 2019.
653 Aurora A kinase RNAi and small molecule inhibition of Aurora kinases with VE-465 induce apoptotic death in multiple myeloma cells.Leuk Lymphoma. 2008 Mar;49(3):559-69. doi: 10.1080/10428190701824544.
654 Cell adhesion downregulates the expression of Homer1b/c and contributes to drug resistance in multiple myeloma cells.Oncol Rep. 2016 Mar;35(3):1875-83. doi: 10.3892/or.2015.4532. Epub 2015 Dec 29.
655 Overexpression of HOXB7 and homeobox genes characterizes multiple myeloma patients lacking the major primary immunoglobulin heavy chain locus translocations.Am J Hematol. 2011 Dec;86(12):E64-6. doi: 10.1002/ajh.22164. Epub 2011 Sep 22.
656 G1P3, an IFN-induced survival factor, antagonizes TRAIL-induced apoptosis in human myeloma cells.J Clin Invest. 2007 Oct;117(10):3107-17. doi: 10.1172/JCI31122.
657 Potential role of insulin-like growth factor binding protein-4 in the uncoupling of bone turnover in multiple myeloma.Br J Haematol. 1999 Mar;104(4):715-22. doi: 10.1046/j.1365-2141.1999.01243.x.
658 A phenylphthalimide derivative, TC11, induces apoptosis by degrading MCL1 in multiple myeloma cells.Biochem Biophys Res Commun. 2020 Jan 1;521(1):252-258. doi: 10.1016/j.bbrc.2019.10.119. Epub 2019 Oct 22.
659 Highly activated and expanded natural killer cells for multiple myeloma immunotherapy.Haematologica. 2012 Sep;97(9):1348-56. doi: 10.3324/haematol.2011.056747. Epub 2012 Mar 14.
660 The role of IL-3 in bone.J Cell Biochem. 2019 May;120(5):6851-6859. doi: 10.1002/jcb.27956. Epub 2018 Oct 15.
661 ILF2 Is a Regulator of RNA Splicing and DNA Damage Response in 1q21-Amplified Multiple Myeloma.Cancer Cell. 2017 Jul 10;32(1):88-100.e6. doi: 10.1016/j.ccell.2017.05.011. Epub 2017 Jun 29.
662 Dioncophyllines C(2), D(2), and F and Related Naphthylisoquinoline Alkaloids from the Congolese Liana Ancistrocladus ileboensis with Potent Activities against Plasmodium falciparum and against Multiple Myeloma and Leukemia Cell Lines.J Nat Prod. 2017 Feb 24;80(2):443-458. doi: 10.1021/acs.jnatprod.6b00967. Epub 2017 Jan 25.
663 PTEN, but not SHIP and SHIP2, suppresses the PI3K/Akt pathway and induces growth inhibition and apoptosis of myeloma cells.Oncogene. 2002 Aug 8;21(34):5289-300. doi: 10.1038/sj.onc.1205650.
664 Early tumor-cell gene expression changes may predict the response to first-line bortezomib-based therapy in patients with newly diagnosed multiple myeloma.J BUON. 2015 Sep-Oct;20(5):1314-21.
665 Homotypic and Heterotypic Activation of the Notch Pathway in Multiple Myeloma-Enhanced Angiogenesis: A Novel Therapeutic Target?.Neoplasia. 2019 Jan;21(1):93-105. doi: 10.1016/j.neo.2018.10.011. Epub 2018 Dec 5.
666 Constitutively expressed Oct-2 prevents immunoglobulin gene silencing in myeloma x T cell hybrids.Immunity. 1994 Nov;1(8):623-34. doi: 10.1016/1074-7613(94)90034-5.
667 Pro-apoptotic and antiproliferative activity of human KCNRG, a putative tumor suppressor in 13q14 region.Tumour Biol. 2010 Jan;31(1):33-45. doi: 10.1007/s13277-009-0005-0. Epub 2009 Dec 18.
668 UTX/KDM6A Loss Enhances the Malignant Phenotype of Multiple Myeloma and Sensitizes Cells to EZH2 inhibition.Cell Rep. 2017 Oct 17;21(3):628-640. doi: 10.1016/j.celrep.2017.09.078.
669 Interaction between KIR3DS1 and HLA-Bw4 predicts for progression-free survival after autologous stem cell transplantation in patients with multiple myeloma.Blood. 2010 Sep 23;116(12):2033-9. doi: 10.1182/blood-2010-03-273706. Epub 2010 Jun 18.
670 LncRNA OIP5-AS1 loss-induced microRNA-410 accumulation regulates cell proliferation and apoptosis by targeting KLF10 via activating PTEN/PI3K/AKT pathway in multiple myeloma.Cell Death Dis. 2017 Aug 10;8(8):e2975. doi: 10.1038/cddis.2017.358.
671 Autologous T cells expressing the oncogenic transcription factor KLF6-SV1 prevent apoptosis of chronic lymphocytic leukemia cells.PLoS One. 2018 Feb 12;13(2):e0192839. doi: 10.1371/journal.pone.0192839. eCollection 2018.
672 Differential expression of DKK-1 binding receptors on stromal cells and myeloma cells results in their distinct response to secreted DKK-1 in myeloma.Mol Cancer. 2010 Sep 16;9:247. doi: 10.1186/1476-4598-9-247.
673 Impact of MiRSNPs on survival and progression in patients with multiple myeloma undergoing autologous stem cell transplantation.Clin Cancer Res. 2012 Jul 1;18(13):3697-704. doi: 10.1158/1078-0432.CCR-12-0191. Epub 2012 Apr 26.
674 Inactivation of the E3/LAPTm5 gene by chromosomal rearrangement and DNA methylation in human multiple myeloma.Leukemia. 2003 Aug;17(8):1650-7. doi: 10.1038/sj.leu.2403026.
675 Common variation at 3q26.2, 6p21.33, 17p11.2 and 22q13.1 influences multiple myeloma risk.Nat Genet. 2013 Oct;45(10):1221-1225. doi: 10.1038/ng.2733. Epub 2013 Aug 18.
676 Activation of LTBP3 gene by a long noncoding RNA (lncRNA) MALAT1 transcript in mesenchymal stem cells from multiple myeloma.J Biol Chem. 2014 Oct 17;289(42):29365-75. doi: 10.1074/jbc.M114.572693. Epub 2014 Sep 3.
677 MAFb protein confers intrinsic resistance to proteasome inhibitors in multiple myeloma.BMC Cancer. 2018 Jul 6;18(1):724. doi: 10.1186/s12885-018-4602-4.
678 Expression of hsa-MIR-204, RUNX2, PPAR, and BCL2 in Bone Marrow Derived Mesenchymal Stem Cells from Multiple Myeloma Patients and Normal Individuals.Cell J. 2017 Spring;19(Suppl 1):27-36. doi: 10.22074/cellj.2017.4480. Epub 2017 May 17.
679 Neither P-gp SNP variants, P-gp expression nor functional P-gp activity predicts MDR in a preliminary study of plasma cell myeloma.Cytometry B Clin Cytom. 2012 Jul;82(4):229-37. doi: 10.1002/cyto.b.21018. Epub 2012 Mar 29.
680 Biphenotypic plasma cell myeloma: two cases of plasma cell neoplasm with a coexpression of kappa and lambda light chains.Int J Clin Exp Pathol. 2015 Jul 1;8(7):8536-44. eCollection 2015.
681 Skeletrophin, a novel ubiquitin ligase to the intracellular region of Jagged-2, is aberrantly expressed in multiple myeloma.Am J Pathol. 2005 Jun;166(6):1817-26. doi: 10.1016/S0002-9440(10)62491-1.
682 Chemokine-idiotype fusion DNA vaccines are potentiated by bivalency and xenogeneic sequences.Blood. 2007 Sep 15;110(6):1797-805. doi: 10.1182/blood-2006-06-032938. Epub 2007 May 31.
683 Human beta-defensin-1 and -2 and matrix metalloproteinase-25 and -26 expression in chronic and aggressive periodontitis and in peri-implantitis.Arch Oral Biol. 2008 Feb;53(2):175-86. doi: 10.1016/j.archoralbio.2007.09.010. Epub 2007 Nov 9.
684 Translocation t(11;14)(q13;q32) is the hallmark of IgM, IgE, and nonsecretory multiple myeloma variants.Blood. 2003 Feb 15;101(4):1570-1. doi: 10.1182/blood-2002-08-2436. Epub 2002 Oct 3.
685 Aberrant promoter methylation of p15 (INKb) and p16 (INKa) genes may contribute to the pathogenesis of multiple myeloma: a meta-analysis.Tumour Biol. 2014 Sep;35(9):9035-43. doi: 10.1007/s13277-014-2054-2. Epub 2014 Jun 8.
686 Acquisition of resistance toward HYD1 correlates with a reduction in cleaved 4 integrin expression and a compromised CAM-DR phenotype.Mol Cancer Ther. 2011 Dec;10(12):2257-66. doi: 10.1158/1535-7163.MCT-11-0149. Epub 2011 Oct 6.
687 Anti-CD40 antibody binding modulates human multiple myeloma clonogenicity in vitro.Blood. 1994 Nov 1;84(9):3026-33.
688 Therapeutic Advances in the Management of Smoldering Myeloma.Am J Ther. 2020 Mar/Apr;27(2):e194-e203. doi: 10.1097/MJT.0000000000001034.
689 Effects of TNF, NOS3, MDR1 Gene Polymorphisms on Clinical Parameters, Prognosis and Survival of Multiple Myeloma Cases.Asian Pac J Cancer Prev. 2016;17(3):1009-14. doi: 10.7314/apjcp.2016.17.3.1009.
690 Aberrant expression of napsin A in a subset of malignant lymphomas.Histol Histopathol. 2016 Feb;31(2):213-21. doi: 10.14670/HH-11-669. Epub 2015 Sep 24.
691 Loss of the SMRT/NCoR2 corepressor correlates with JAG2 overexpression in multiple myeloma.Cancer Res. 2009 May 15;69(10):4380-7. doi: 10.1158/0008-5472.CAN-08-3467. Epub 2009 May 5.
692 Transcriptomic profile induced in bone marrow mesenchymal stromal cells after interaction with multiple myeloma cells: implications in myeloma progression and myeloma bone disease.Oncotarget. 2014 Sep 30;5(18):8284-305. doi: 10.18632/oncotarget.2058.
693 Gene-expression signature of benign monoclonal gammopathy evident in multiple myeloma is linked to good prognosis.Blood. 2007 Feb 15;109(4):1692-700. doi: 10.1182/blood-2006-07-037077. Epub 2006 Oct 5.
694 NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis.Nat Cell Biol. 2007 Jul;9(7):804-12. doi: 10.1038/ncb1608. Epub 2007 Jun 24.
695 Identification of novel antigens with induced immune response in monoclonal gammopathy of undetermined significance.Blood. 2009 Oct 8;114(15):3276-84. doi: 10.1182/blood-2009-04-219436. Epub 2009 Jul 8.
696 Novel ORC4L gene mutation in B-cell lymphoproliferative disorders.Am J Med Sci. 2009 Dec;338(6):527-9. doi: 10.1097/MAJ.0b013e3181b7f17c.
697 Doxorubicin-Loaded PEG-CdTe Quantum Dots as a Smart Drug Delivery System for Extramedullary Multiple Myeloma Treatment.Nanoscale Res Lett. 2018 Nov 22;13(1):373. doi: 10.1186/s11671-018-2782-0.
698 MDS-type abnormalities within myeloma signature karyotype (MM-MDS): only 13% 1-year survival despite tandem transplants.Br J Haematol. 2003 Aug;122(3):430-40. doi: 10.1046/j.1365-2141.2003.04455.x.
699 Research Progress on PARP14 as a Drug Target.Front Pharmacol. 2019 Mar 5;10:172. doi: 10.3389/fphar.2019.00172. eCollection 2019.
700 DNA vaccines to target the cancer testis antigen PASD1 in human multiple myeloma.Leukemia. 2010 Nov;24(11):1951-9. doi: 10.1038/leu.2010.196. Epub 2010 Sep 23.
701 miR-320a regulates cell proliferation and apoptosis in multiple myeloma by targeting pre-B-cell leukemia transcription factor 3.Biochem Biophys Res Commun. 2016 May 13;473(4):1315-1320. doi: 10.1016/j.bbrc.2016.04.069. Epub 2016 Apr 14.
702 PCDH10 inhibits cell proliferation of multiple myeloma via the negative regulation of the Wnt/-catenin/BCL-9 signaling pathway.Oncol Rep. 2015 Aug;34(2):747-54. doi: 10.3892/or.2015.4056. Epub 2015 Jun 11.
703 NSD2 is recruited through its PHD domain to oncogenic gene loci to drive multiple myeloma.Cancer Res. 2013 Oct 15;73(20):6277-88. doi: 10.1158/0008-5472.CAN-13-1000. Epub 2013 Aug 26.
704 Establishment of stable multiple myeloma cell line with overexpressed PDCD5 and its proapoptosis mechanism.Int J Clin Exp Pathol. 2015 Sep 1;8(9):10635-43. eCollection 2015.
705 MAP17 (PDZKIP1) Expression Determines Sensitivity to the Proteasomal Inhibitor Bortezomib by Preventing Cytoprotective Autophagy and NFB Activation in Breast Cancer.Mol Cancer Ther. 2015 Jun;14(6):1454-65. doi: 10.1158/1535-7163.MCT-14-1053. Epub 2015 Apr 2.
706 A quantitative analysis of genomic instability in lymphoid and plasma cell neoplasms based on the PIG-A gene.Mutat Res. 2010 Apr 1;686(1-2):1-8. doi: 10.1016/j.mrfmmm.2009.11.012. Epub 2010 Jan 8.
707 Exploiting the pro-apoptotic function of NOXA as a therapeutic modality in cancer.Expert Opin Ther Targets. 2017 Aug;21(8):767-779. doi: 10.1080/14728222.2017.1349754. Epub 2017 Jul 18.
708 TCR-based therapy for multiple myeloma and other B-cell malignancies targeting intracellular transcription factor BOB1.Blood. 2017 Mar 9;129(10):1284-1295. doi: 10.1182/blood-2016-09-737536. Epub 2017 Jan 4.
709 In silico analysis identifies CRISP3 as a potential peripheral blood biomarker for multiple myeloma: From data modeling to validation with RT-PCR.Oncol Lett. 2018 Apr;15(4):5167-5174. doi: 10.3892/ol.2018.7969. Epub 2018 Feb 6.
710 Disulfiram/copper targets stem cell-like ALDH(+) population of multiple myeloma by inhibition of ALDH1A1 and Hedgehog pathway.J Cell Biochem. 2018 Aug;119(8):6882-6893. doi: 10.1002/jcb.26885. Epub 2018 Apr 17.
711 Ectopic expression of MAFB gene in human myeloma cells carrying (14;20)(q32;q11) chromosomal translocations.Jpn J Cancer Res. 2001 Jun;92(6):638-44. doi: 10.1111/j.1349-7006.2001.tb01142.x.
712 Effects of epigenetic-based anti-cancer drugs in leukaemia and multiple myeloma cells.Cell Biol Int. 2011 Dec;35(12):1195-203. doi: 10.1042/CBI20100820.
713 Aiolos collaborates with Blimp-1 to regulate the survival of multiple myeloma cells.Cell Death Differ. 2016 Jul;23(7):1175-84. doi: 10.1038/cdd.2015.167. Epub 2016 Jan 29.
714 Prokineticin-1/endocrine gland-derived vascular endothelial growth factor is a survival factor for human multiple myeloma cells.Leuk Lymphoma. 2010 Oct;51(10):1902-12. doi: 10.3109/10428194.2010.512963.
715 The G-Allele of the PSMA6-8C>G polymorphism is associated with poor outcome in multiple myeloma independently of circulating proteasome serum levels.Eur J Haematol. 2010 Aug;85(2):108-13. doi: 10.1111/j.1600-0609.2010.01455.x. Epub 2010 Apr 8.
716 Proteasome Subunit Beta Type 1 P11A Polymorphism Is a New Prognostic Marker in Multiple Myeloma.Clin Lymphoma Myeloma Leuk. 2017 Nov;17(11):734-742. doi: 10.1016/j.clml.2017.06.034. Epub 2017 Jun 30.
717 PSMB4 promotes multiple myeloma cell growth by activating NF-B-miR-21 signaling.Biochem Biophys Res Commun. 2015 Mar 6;458(2):328-33. doi: 10.1016/j.bbrc.2015.01.110. Epub 2015 Feb 3.
718 CRISPR Genome-Wide Screening Identifies Dependence on the Proteasome Subunit PSMC6 for Bortezomib Sensitivity in Multiple Myeloma.Mol Cancer Ther. 2017 Dec;16(12):2862-2870. doi: 10.1158/1535-7163.MCT-17-0130. Epub 2017 Sep 27.
719 Pharmacogenomics of bortezomib test-dosing identifies hyperexpression of proteasome genes, especially PSMD4, as novel high-risk feature in myeloma treated with Total Therapy 3.Blood. 2011 Sep 29;118(13):3512-24. doi: 10.1182/blood-2010-12-328252. Epub 2011 May 31.
720 Myeloma cell expression of 10 candidate genes for osteolytic bone disease. Only overexpression of DKK1 correlates with clinical bone involvement at diagnosis.Br J Haematol. 2008 Jan;140(1):25-35. doi: 10.1111/j.1365-2141.2007.06871.x. Epub 2007 Nov 12.
721 Expression of parathyroid hormone-related protein (PTHrP) in multiple myeloma.Pathol Int. 2002 Jan;52(1):63-8. doi: 10.1046/j.1440-1827.2002.01314.x.
722 NK cells and multiple myeloma-associated endothelial cells: molecular interactions and influence of IL-27.Oncotarget. 2017 May 23;8(21):35088-35102. doi: 10.18632/oncotarget.17070.
723 Immunohistochemical expression of cereblon and MUM1 as potential predictive markers of response to lenalidomide in extranodal marginal zone B-cell lymphoma of the mucosa-associated lymphoid tissue (MALT lymphoma).Hematol Oncol. 2018 Feb;36(1):62-67. doi: 10.1002/hon.2472. Epub 2017 Aug 22.
724 Comparable outcomes using propylene glycol-free melphalan for autologous stem cell transplantation in multiple myeloma.Bone Marrow Transplant. 2019 Apr;54(4):587-594. doi: 10.1038/s41409-018-0302-6. Epub 2018 Aug 16.
725 Epigenetic silencing of the human nucleotide excision repair gene, hHR23B, in interleukin-6-responsive multiple myeloma KAS-6/1 cells.J Biol Chem. 2005 Feb 11;280(6):4182-7. doi: 10.1074/jbc.M412566200. Epub 2004 Nov 17.
726 Targeting EXT1 reveals a crucial role for heparan sulfate in the growth of multiple myeloma.Blood. 2010 Jan 21;115(3):601-4. doi: 10.1182/blood-2009-02-204396. Epub 2009 Nov 13.
727 Genomic screening for genes silenced by DNA methylation revealed an association between RASD1 inactivation and dexamethasone resistance in multiple myeloma.Clin Cancer Res. 2009 Jul 1;15(13):4356-64. doi: 10.1158/1078-0432.CCR-08-3336. Epub 2009 Jun 23.
728 Plasma cell labeling index correlates with deletion of 13q14 in multiple myeloma.Leuk Lymphoma. 2011 Feb;52(2):260-4. doi: 10.3109/10428194.2010.538775. Epub 2010 Dec 6.
729 RBQ3 participates in multiple myeloma cell proliferation, adhesion and chemoresistance.Int J Biol Macromol. 2016 Oct;91:115-22. doi: 10.1016/j.ijbiomac.2016.05.050. Epub 2016 May 14.
730 The presence of DRB1*01 allele in multiple myeloma patients is associated with an indolent disease.Tissue Antigens. 2008 Jun;71(6):548-51. doi: 10.1111/j.1399-0039.2008.01048.x. Epub 2008 Apr 7.
731 Extracellular matrix protein Reelin promotes myeloma progression by facilitating tumor cell proliferation and glycolysis.Sci Rep. 2017 Mar 27;7:45305. doi: 10.1038/srep45305.
732 Nonrandom 4p13 rearrangements of the RhoH/TTF gene, encoding a GTP-binding protein, in non-Hodgkin's lymphoma and multiple myeloma.Oncogene. 2000 Apr 13;19(16):2023-32. doi: 10.1038/sj.onc.1203521.
733 Proteomic Characterization of the World Trade Center dust-activated mdig and c-myc signaling circuit linked to multiple myeloma.Sci Rep. 2016 Nov 11;6:36305. doi: 10.1038/srep36305.
734 RITA inhibits multiple myeloma cell growth through induction of p53-mediated caspase-dependent apoptosis and synergistically enhances nutlin-induced cytotoxic responses.Mol Cancer Ther. 2010 Nov;9(11):3041-51. doi: 10.1158/1535-7163.MCT-10-0471. Epub 2010 Nov 9.
735 Knockdown of macrophage inhibitory cytokine-1 in RPMI-8226 human multiple myeloma cells inhibits osteoclastic differentiation through inhibiting the RANKL-Erk1/2 signaling pathway.Mol Med Rep. 2016 Dec;14(6):5199-5204. doi: 10.3892/mmr.2016.5879. Epub 2016 Oct 24.
736 Endothelin-1 receptor blockade as new possible therapeutic approach in multiple myeloma.Br J Haematol. 2017 Sep;178(5):781-793. doi: 10.1111/bjh.14771. Epub 2017 Jun 9.
737 Pembrolizumab, pomalidomide, and low-dose dexamethasone for relapsed/refractory multiple myeloma.Blood. 2017 Sep 7;130(10):1189-1197. doi: 10.1182/blood-2017-03-775122. Epub 2017 May 1.
738 Identification and expression of MMSA-8, and its clinical significance in multiple myeloma.Oncol Rep. 2017 Jun;37(6):3235-3243. doi: 10.3892/or.2017.5609. Epub 2017 Apr 28.
739 Multiple myeloma cells' capacity to decompose H(2)O(2) determines lenalidomide sensitivity.Blood. 2017 Feb 23;129(8):991-1007. doi: 10.1182/blood-2016-09-738872. Epub 2016 Dec 27.
740 Classical Hodgkin's lymphoma shows epigenetic features of abortive plasma cell differentiation.Haematologica. 2011 Jun;96(6):863-70. doi: 10.3324/haematol.2010.031138. Epub 2011 Mar 10.
741 Scavenger receptor class A member 3 (SCARA3) in disease progression and therapy resistance in multiple myeloma.Leuk Res. 2013 Aug;37(8):963-9. doi: 10.1016/j.leukres.2013.03.004. Epub 2013 Mar 26.
742 Gene expression profiling of bone marrow endothelial cells in patients with multiple myeloma.Clin Cancer Res. 2009 Sep 1;15(17):5369-78. doi: 10.1158/1078-0432.CCR-09-0040. Epub 2009 Aug 18.
743 Pattern of gene expression and immune responses to Semenogelin 1 in chronic hematologic malignancies.J Immunother. 2003 Nov-Dec;26(6):461-7. doi: 10.1097/00002371-200311000-00001.
744 Metabolism of thyroxine-binding globulin in man. Abnormal rate of synthesis in inherited thyroxine-binding globulin deficiency and excess.J Clin Invest. 1976 Feb;57(2):485-95. doi: 10.1172/JCI108301.
745 Multiple-myeloma-related WHSC1/MMSET isoform RE-IIBP is a histone methyltransferase with transcriptional repression activity.Mol Cell Biol. 2008 Mar;28(6):2023-34. doi: 10.1128/MCB.02130-07. Epub 2008 Jan 2.
746 Identification of unbalanced genome copy number abnormalities in patients with multiple myeloma by single-nucleotide polymorphism genotyping microarray analysis.Int J Hematol. 2012 Oct;96(4):492-500. doi: 10.1007/s12185-012-1171-1. Epub 2012 Sep 13.
747 Epigenetic dysregulation of secreted Frizzled-related proteins in multiple myeloma.Cancer Lett. 2009 Aug 18;281(1):24-31. doi: 10.1016/j.canlet.2009.02.002. Epub 2009 Mar 18.
748 Loss of serum and glucocorticoid-regulated kinase 3 (SGK3) does not affect proliferation and survival of multiple myeloma cell lines.PLoS One. 2015 Apr 2;10(4):e0122689. doi: 10.1371/journal.pone.0122689. eCollection 2015.
749 Growth Factor-like Gene Regulation Is Separable from Survival and Maturation in Antibody-Secreting Cells.J Immunol. 2019 Feb 15;202(4):1287-1300. doi: 10.4049/jimmunol.1801407. Epub 2019 Jan 14.
750 The role of SH3GL3 in myeloma cell migration/invasion, stemness and chemo-resistance.Oncotarget. 2016 Nov 8;7(45):73101-73113. doi: 10.18632/oncotarget.12231.
751 Human herpesvirus 8 open reading frame 26 and open reading frame 65 sequences from multiple myeloma patients: a shared pattern not found in Kaposi's sarcoma or primary effusion lymphoma.Clin Cancer Res. 2000 Nov;6(11):4226-33.
752 Quantitative superresolution microscopy reveals differences in nuclear DNA organization of multiple myeloma and monoclonal gammopathy of undetermined significance.J Cell Biochem. 2015 May;116(5):704-10. doi: 10.1002/jcb.25030.
753 Disruption of Src function potentiates Chk1-inhibitor-induced apoptosis in human multiple myeloma cells in vitro and in vivo.Blood. 2011 Feb 10;117(6):1947-57. doi: 10.1182/blood-2010-06-291146. Epub 2010 Dec 10.
754 Clinical impact of serum soluble SLAMF7 in multiple myeloma.Oncotarget. 2018 Oct 5;9(78):34784-34793. doi: 10.18632/oncotarget.26196. eCollection 2018 Oct 5.
755 Abnormal repression of SHP-1, SHP-2 and SOCS-1 transcription sustains the activation of the JAK/STAT3 pathway and the progression of the disease in multiple myeloma.PLoS One. 2017 Apr 3;12(4):e0174835. doi: 10.1371/journal.pone.0174835. eCollection 2017.
756 Differential oncogene-related gene expressions in myeloma cells resistant to prednisone and vincristine.Biomed Pharmacother. 2012 Oct;66(7):506-11. doi: 10.1016/j.biopha.2012.02.007. Epub 2012 May 9.
757 Integrative analysis of DNA copy number, DNA methylation and gene expression in multiple myeloma reveals alterations related to relapse.Oncotarget. 2016 Dec 6;7(49):80664-80679. doi: 10.18632/oncotarget.13025.
758 Nuclear expression of sox11 is highly associated with mantle cell lymphoma but is independent of t(11;14)(q13;q32) in non-mantle cell B-cell neoplasms.Mod Pathol. 2010 Jan;23(1):105-12. doi: 10.1038/modpathol.2009.140. Epub 2009 Oct 2.
759 SPAN-Xb expression in myeloma cells is dependent on promoter hypomethylation and can be upregulated pharmacologically.Int J Cancer. 2006 Mar 15;118(6):1436-44. doi: 10.1002/ijc.21499.
760 Cell adhesion to fibronectin down-regulates the expression of Spy1 and contributes to drug resistance in multiple myeloma cells.Int J Hematol. 2013 Oct;98(4):446-55. doi: 10.1007/s12185-013-1435-4. Epub 2013 Sep 14.
761 Increased expression of miR-27 predicts poor prognosis and promotes tumorigenesis in human multiple myeloma.Biosci Rep. 2019 Apr 9;39(4):BSR20182502. doi: 10.1042/BSR20182502. Print 2019 Apr 30.
762 shRNA-mediated silencing of sorcin increases drug chemosensitivity in myeloma KM3/DDP and U266/ADM cell lines.Int J Clin Exp Pathol. 2015 Mar 1;8(3):2300-10. eCollection 2015.
763 SSX cancer testis antigens are expressed in most multiple myeloma patients: co-expression of SSX1, 2, 4, and 5 correlates with adverse prognosis and high frequencies of SSX-positive PCs.J Immunother. 2005 Nov-Dec;28(6):564-75. doi: 10.1097/01.cji.0000175685.36239.e5.
764 The sialyltransferase ST3GAL6 influences homing and survival in multiple myeloma.Blood. 2014 Sep 11;124(11):1765-76. doi: 10.1182/blood-2014-03-560862. Epub 2014 Jul 24.
765 Syntaxin-4 is essential for IgE secretion by plasma cells.Biochem Biophys Res Commun. 2013 Oct 11;440(1):163-7. doi: 10.1016/j.bbrc.2013.09.058. Epub 2013 Sep 18.
766 Association of TAP1 and TAP2 gene polymorphisms with hematological malignancies.Asian Pac J Cancer Prev. 2013;14(9):5213-7. doi: 10.7314/apjcp.2013.14.9.5213.
767 Investigation of copy-number variations of C8orf4 in hematological malignancies.Med Oncol. 2011 Dec;28 Suppl 1:S647-52. doi: 10.1007/s12032-010-9698-6. Epub 2010 Sep 29.
768 Elevated expression of APE1/Ref-1 and its regulation on IL-6 and IL-8 in bone marrow stromal cells of multiple myeloma.Clin Lymphoma Myeloma Leuk. 2010 Oct;10(5):385-93. doi: 10.3816/CLML.2010.n.072.
769 The potential functions of FAM46C in oral squamous cell carcinoma.Onco Targets Ther. 2018 Dec 10;11:8915-8923. doi: 10.2147/OTT.S185244. eCollection 2018.
770 Dysregulation of CD47 and the ligands thrombospondin 1 and 2 in multiple myeloma.Br J Haematol. 2007 Sep;138(6):756-60. doi: 10.1111/j.1365-2141.2007.06729.x.
771 Prognostic or predictive value of circulating cytokines and angiogenic factors for initial treatment of multiple myeloma in the GIMEMA MM0305 randomized controlled trial.J Hematol Oncol. 2019 Jan 9;12(1):4. doi: 10.1186/s13045-018-0691-4.
772 Tight Junction Protein 1 Modulates Proteasome Capacity and Proteasome Inhibitor Sensitivity in Multiple Myeloma via EGFR/JAK1/STAT3 Signaling.Cancer Cell. 2016 May 9;29(5):639-652. doi: 10.1016/j.ccell.2016.03.026. Epub 2016 Apr 28.
773 Expression and function of toll-like receptors in multiple myeloma patients: toll-like receptor ligands promote multiple myeloma cell growth and survival via activation of nuclear factor-kappaB.Br J Haematol. 2010 Sep;150(5):543-53. doi: 10.1111/j.1365-2141.2010.08284.x. Epub 2010 Jul 14.
774 Aberrant methylation of trail decoy receptor genes is frequent in multiple tumor types.Int J Cancer. 2004 May 1;109(5):786-92. doi: 10.1002/ijc.20041.
775 Genetic polymorphisms of EPHX1, Gsk3beta, TNFSF8 and myeloma cell DKK-1 expression linked to bone disease in myeloma.Leukemia. 2009 Oct;23(10):1913-9. doi: 10.1038/leu.2009.129. Epub 2009 Aug 6.
776 B7-1 and 4-1BB ligand expression on a myeloma cell line makes it possible to expand autologous tumor-specific cytotoxic T cells in vitro.Exp Hematol. 2007 Mar;35(3):443-53. doi: 10.1016/j.exphem.2006.11.002.
777 The oncogenic membrane protein LMP1 sequesters TRAF3 in B-cell lymphoma cells to produce functional TRAF3 deficiency.Blood Adv. 2017 Dec 18;1(27):2712-2723. doi: 10.1182/bloodadvances.2017009670. eCollection 2017 Dec 26.
778 An integrated bioinformatical analysis of miR-19a target genes in multiple myeloma.Exp Ther Med. 2017 Nov;14(5):4711-4720. doi: 10.3892/etm.2017.5173. Epub 2017 Sep 21.
779 Interferon regulatory factor 4 (IRF-4) targets IRF-5 to regulate Epstein-Barr virus transformation.J Biol Chem. 2011 May 20;286(20):18261-7. doi: 10.1074/jbc.M110.210542. Epub 2011 Mar 24.
780 Dual regulation of glucocorticoid-induced leucine zipper (GILZ) by the glucocorticoid receptor and the PI3-kinase/AKT pathways in multiple myeloma.J Steroid Biochem Mol Biol. 2008 Jun;110(3-5):244-54. doi: 10.1016/j.jsbmb.2007.11.003. Epub 2008 Apr 20.