General Information of Drug Off-Target (DOT) (ID: OTG81SGD)

DOT Name Tyrosine--tRNA ligase, cytoplasmic
Synonyms EC 6.1.1.1; Tyrosyl-tRNA synthetase; TyrRS
Gene Name YARS1
Related Disease
Charcot marie tooth disease ( )
Charcot-Marie-Tooth disease dominant intermediate C ( )
Neurologic, endocrine, and pancreatic disease, multisystem, infantile-onset 2 ( )
UniProt ID
SYYC_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1N3L; 1NTG; 1Q11; 4Q93; 4QBT; 5THH; 5THL; 7ROU
EC Number
6.1.1.1
Pfam ID
PF00579 ; PF01588
Sequence
MGDAPSPEEKLHLITRNLQEVLGEEKLKEILKERELKIYWGTATTGKPHVAYFVPMSKIA
DFLKAGCEVTILFADLHAYLDNMKAPWELLELRVSYYENVIKAMLESIGVPLEKLKFIKG
TDYQLSKEYTLDVYRLSSVVTQHDSKKAGAEVVKQVEHPLLSGLLYPGLQALDEEYLKVD
AQFGGIDQRKIFTFAEKYLPALGYSKRVHLMNPMVPGLTGSKMSSSEEESKIDLLDRKED
VKKKLKKAFCEPGNVENNGVLSFIKHVLFPLKSEFVILRDEKWGGNKTYTAYVDLEKDFA
AEVVHPGDLKNSVEVALNKLLDPIREKFNTPALKKLASAAYPDPSKQKPMAKGPAKNSEP
EEVIPSRLDIRVGKIITVEKHPDADSLYVEKIDVGEAEPRTVVSGLVQFVPKEELQDRLV
VVLCNLKPQKMRGVESQGMLLCASIEGINRQVEPLDPPAGSAPGEHVFVKGYEKGQPDEE
LKPKKKVFEKLQADFKISEECIAQWKQTNFMTKLGSISCKSLKGGNIS
Function
Tyrosine--tRNA ligase that catalyzes the attachment of tyrosine to tRNA(Tyr) in a two-step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr) (Probable). Also acts as a positive regulator of poly-ADP-ribosylation in the nucleus, independently of its tyrosine--tRNA ligase activity. Activity is switched upon resveratrol-binding: resveratrol strongly inhibits the tyrosine--tRNA ligase activity and promotes relocalization to the nucleus, where YARS1 specifically stimulates the poly-ADP-ribosyltransferase activity of PARP1.
KEGG Pathway
Aminoacyl-tR. biosynthesis (hsa00970 )
Reactome Pathway
Cytosolic tRNA aminoacylation (R-HSA-379716 )

Molecular Interaction Atlas (MIA) of This DOT

3 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Charcot marie tooth disease DIS3BT2L Definitive Autosomal dominant [1]
Charcot-Marie-Tooth disease dominant intermediate C DISG03UJ Strong Autosomal dominant [2]
Neurologic, endocrine, and pancreatic disease, multisystem, infantile-onset 2 DISKMOUS Strong Autosomal recessive [3]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Tyrosine--tRNA ligase, cytoplasmic. [4]
------------------------------------------------------------------------------------
23 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Tyrosine--tRNA ligase, cytoplasmic. [5]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Tyrosine--tRNA ligase, cytoplasmic. [6]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Tyrosine--tRNA ligase, cytoplasmic. [7]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Tyrosine--tRNA ligase, cytoplasmic. [8]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Tyrosine--tRNA ligase, cytoplasmic. [7]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Tyrosine--tRNA ligase, cytoplasmic. [5]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Tyrosine--tRNA ligase, cytoplasmic. [9]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Tyrosine--tRNA ligase, cytoplasmic. [10]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Tyrosine--tRNA ligase, cytoplasmic. [7]
Phenobarbital DMXZOCG Approved Phenobarbital increases the expression of Tyrosine--tRNA ligase, cytoplasmic. [11]
Cidofovir DMA13GD Approved Cidofovir affects the expression of Tyrosine--tRNA ligase, cytoplasmic. [7]
Fenofibrate DMFKXDY Approved Fenofibrate increases the expression of Tyrosine--tRNA ligase, cytoplasmic. [7]
Clodronate DM9Y6X7 Approved Clodronate decreases the expression of Tyrosine--tRNA ligase, cytoplasmic. [7]
Ibuprofen DM8VCBE Approved Ibuprofen increases the expression of Tyrosine--tRNA ligase, cytoplasmic. [7]
Adefovir dipivoxil DMMAWY1 Approved Adefovir dipivoxil decreases the expression of Tyrosine--tRNA ligase, cytoplasmic. [7]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Tyrosine--tRNA ligase, cytoplasmic. [13]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Tyrosine--tRNA ligase, cytoplasmic. [14]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Tyrosine--tRNA ligase, cytoplasmic. [15]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN increases the expression of Tyrosine--tRNA ligase, cytoplasmic. [16]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Tyrosine--tRNA ligase, cytoplasmic. [17]
chloropicrin DMSGBQA Investigative chloropicrin increases the expression of Tyrosine--tRNA ligase, cytoplasmic. [18]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A decreases the expression of Tyrosine--tRNA ligase, cytoplasmic. [19]
AM251 DMTAWHL Investigative AM251 increases the expression of Tyrosine--tRNA ligase, cytoplasmic. [20]
------------------------------------------------------------------------------------
⏷ Show the Full List of 23 Drug(s)
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
Resveratrol DM3RWXL Phase 3 Resveratrol affects the localization of Tyrosine--tRNA ligase, cytoplasmic. [12]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy. Nat Genet. 2006 Feb;38(2):197-202. doi: 10.1038/ng1727. Epub 2006 Jan 22.
3 A novel multisystem disease associated with recessive mutations in the tyrosyl-tRNA synthetase (YARS) gene. Am J Med Genet A. 2017 Jan;173(1):126-134. doi: 10.1002/ajmg.a.37973. Epub 2016 Sep 15.
4 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
5 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
6 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
7 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
8 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
9 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
10 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
11 Dose- and time-dependent effects of phenobarbital on gene expression profiling in human hepatoma HepaRG cells. Toxicol Appl Pharmacol. 2009 Feb 1;234(3):345-60.
12 A human tRNA synthetase is a potent PARP1-activating effector target for resveratrol. Nature. 2015 Mar 19;519(7543):370-3. doi: 10.1038/nature14028. Epub 2014 Dec 22.
13 Label-free quantitative proteomic analysis identifies the oncogenic role of FOXA1 in BaP-transformed 16HBE cells. Toxicol Appl Pharmacol. 2020 Sep 15;403:115160. doi: 10.1016/j.taap.2020.115160. Epub 2020 Jul 25.
14 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
15 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
16 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
17 Epigenetic influences of low-dose bisphenol A in primary human breast epithelial cells. Toxicol Appl Pharmacol. 2010 Oct 15;248(2):111-21.
18 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
19 Persistence of epigenomic effects after recovery from repeated treatment with two nephrocarcinogens. Front Genet. 2018 Dec 3;9:558.
20 Cannabinoid derivatives induce cell death in pancreatic MIA PaCa-2 cells via a receptor-independent mechanism. FEBS Lett. 2006 Mar 20;580(7):1733-9.