General Information of Drug Off-Target (DOT) (ID: OTHODA1F)

DOT Name E3 ubiquitin-protein ligase MYCBP2 (MYCBP2)
Synonyms EC 2.3.2.33; Myc-binding protein 2; Protein associated with Myc
Gene Name MYCBP2
Related Disease
Colorectal carcinoma ( )
Neoplasm ( )
Colon cancer ( )
Colon carcinoma ( )
Pre-eclampsia ( )
Promyelocytic leukaemia ( )
Vitiligo ( )
Chronic obstructive pulmonary disease ( )
leukaemia ( )
Leukemia ( )
Human papillomavirus infection ( )
Squamous cell carcinoma ( )
UniProt ID
MYCB2_HUMAN
PDB ID
5O6C; 6T7F
EC Number
2.3.2.33
Pfam ID
PF03256 ; PF08005 ; PF00415 ; PF13540
Sequence
MMMCAATASPAAASSGLGGDGFYPAATFSSSPAPGALFMPVPDGSVAAAGLGLGLPAADS
RGHYQLLLSGRALADRYRRIYTAALNDRDQGGGSAGHPASRNKKILNKKKLKRKQKSKSK
VKTRSKSENLENTVIIPDIKLHSNPSAFNIYCNVRHCVLEWQKKEISLAAASKNSVQSGE
SDSDEEEESKEPPIKLPKIIEVGLCEVFELIKETRFSHPSLCLRSLQALLNVLQGQQPEG
LQSEPPEVLESLFQLLLEITVRSTGMNDSTGQSLTALSCACLFSLVASWGETGRTLQAIS
AILTNNGSHACQTIQVPTILNSLQRSVQAVLVGKIQIQDWFSNGIKKAALMHKWPLKEIS
VDEDDQCLLQNDGFFLYLLCKDGLYKIGSGYSGTVRGHIYNSTSRIRNRKEKKSWLGYAQ
GYLLYRDVNNHSMTAIRISPETLEQDGTVMLPDCHTEGQNILFTDGEYINQIAASRDDGF
VVRIFATSTEPVLQQELQLKLARKCLHACGISLFDLEKDLHIISTGFDEESAILGAGREF
ALMKTANGKIYYTGKYQSLGIKQGGPSAGKWVELPITKSPKIVHFSVGHDGSHALLVAED
GSIFFTGSASKGEDGESTKSRRQSKPYKPKKIIKMEGKIVVYTACNNGSSSVISKDGELY
MFGKDAIYSDSSSLVTDLKGHFVTQVAMGKAHTCVLMKNGEVWTFGVNNKGQCGRDTGAM
NQGGKGFGVENMATAMDEDLEEELDEKDEKSMMCPPGMHKWKLEQCMVCTVCGDCTGYGA
SCVSSGRPDRVPGGICGCGSGESGCAVCGCCKACARELDGQEARQRGILDAVKEMIPLDL
LLAVPVPGVNIEEHLQLRQEEKRQRVIRRHRLEEGRGPLVFAGPIFMNHREQALARLRSH
PAQLKHKRDKHKDGSGERGEKDASKITTYPPGSVRFDCELRAVQVSCGFHHSVVLMENGD
VYTFGYGQHGQLGHGDVNSRGCPTLVQALPGPSTQVTAGSNHTAVLLMDGQVFTFGSFSK
GQLGRPILDVPYWNAKPAPMPNIGSKYGRKATWIGASGDQTFLRIDEALINSHVLATSEI
FASKHIIGLVPASISEPPPFKCLLINKVDGSCKTFNDSEQEDLQGFGVCLDPVYDVIWRF
RPNTRELWCYNAVVADARLPSAADMQSRCSILSPELALPTGSRALTTRSHAALHILGCLD
TLAAMQDLKMGVASTEEETQAVMKVYSKEDYSVVNRFESHGGGWGYSAHSVEAIRFSADT
DILLGGLGLFGGRGEYTAKIKLFELGPDGGDHETDGDLLAETDVLAYDCAAREKYAMMFD
EPVLLQAGWWYVAWARVSGPSSDCGSHGQASITTDDGVVFQFKSSKKSNNGTDVNAGQIP
QLLYRLPTSDGSASKGKQQTSEPVHILKRSFARTVSVECFESLLSILHWSWTTLVLGVEE
LRGLKGFQFTATLLDLERLRFVGTCCLRLLRVYTCEIYPVSATGKAVVEETSKLAECIGK
TRTLLRKILSEGVDHCMVKLDNDPQGYLSQPLSLLEAVLQECHNTFTACFHSFYPTPALQ
WACLCDLLNCLDQDIQEANFKTSSSRLLAAVMSALCHTSVKLTSIFPIAYDGEVLLRSIV
KQVSTENDSTLVHRFPLLVAHMEKLSQSEENISGMTSFREVLEKMLVIVVLPVRNSLRRE
NELFSSHLVSNTCGLLASIVSELTASALGSEVDGLNSLHSVKASANRFTKTSQGRSWNTG
NGSPDAICFSVDKPGIVVVGFSVYGGGGIHEYELEVLVDDSEHAGDSTHSHRWTSLELVK
GTYTTDDSPSDIAEIRLDKVVPLKENVKYAVRLRNYGSRTANGDGGMTTVQCPDGVTFTF
STCSLSSNGTNQTRGQIPQILYYRSEFDGDLQSQLLSKANEEDKNCSRALSVVSTVVRAS
KDLLHRALAVDADDIPELLSSSSLFSMLLPLIIAYIGPVAAAIPKVAVEVFGLVQQLLPS
VAILNQKYAPPAFNPNQSTDSTTGNQPEQGLSACTTSSHYAVIESEHPYKPACVMHYKVT
FPECVRWMTIEFDPQCGTAQSEDVLRLLIPVRTVQNSGYGPKLTSVHENLNSWIELKKFS
GSSGWPTMVLVLPGNEALFSLETASDYVKDDKASFYGFKCFAIGYEFSPGPDEGVIQLEK
ELANLGGVCAAALMKKDLALPIGNELEEDLEILEEAALQVCKTHSGILGKGLALSHSPTI
LEALEGNLPLQIQSNEQSFLDDFIACVPGSSGGRLARWLQPDSYADPQKTSLILNKDDIR
CGWPTTITVQTKDQYGDVVHVPNMKVEVKAVPVSQKKMSLQQDQAKKPQRIPGSPAVTAA
SSNTDMTYGGLASPKLDVSYEPMIVKEARYIAITMMKVYENYSFEELRFASPTPKRPSEN
MLIRVNNDGTYCANWTPGAIGLYTLHVTIDGIEIDAGLEVKVKDPPKGMIPPGTQLVKPK
SEPQPNKVRKFVAKDSAGLRIRSHPSLQSEQIGIVKVNGTITFIDEIHNDDGVWLRLNDE
TIKKYVPNMNGYTEAWCLSFNQHLGKSLLVPVDESKTNTDDFFKDINSCCPQEATMQEQD
MPFLRGGPGMYKVVKTGPSGHNIRSCPNLRGIPIGMLVLGNKVKAVGEVTNSEGTWVQLD
QNSMVEFCESDEGEAWSLARDRGGNQYLRHEDEQALLDQNSQTPPPSPFSVQAFNKGASC
SAQGFDYGLGNSKGDRGNISTSSKPASTSGKSELSSKHSRSLKPDGRMSRTTADQKKPRG
TESLSASESLILKSDAAKLRSDSHSRSLSPNHNTLQTLKSDGRMPSSSRAESPGPGSRLS
SPKPKTLPANRSSPSGASSPRSSSPHDKNLPQKSTAPVKTKLDPPRERSKSDSYTLDPDT
LRKKKMPLTEPLRGRSTSPKPKSVPKDSTDSPGSENRAPSPHVVQENLHSEVVEVCTSST
LKTNSLTDSTCDDSSEFKSVDEGSNKVHFSIGKAPLKDEQEMRASPKISRKCANRHTRPK
KEKSSFLFKGDGSKPLEPAKQAMSPSVAECARAVFASFLWHEGIVHDAMACSSFLKFHPE
LSKEHAPIRSSLNSQQPTEEKETKLKNRHSLEISSALNMFNIAPHGPDISKMGSINKNKV
LSMLKEPPLHEKCEDGKTETTFEMSMHNTMKSKSPLPLTLQHLVAFWEDISLATIKAASQ
NMIFPSPGSCAVLKKKECEKENKKSKKEKKKKEKAEVRPRGNLFGEMAQLAVGGPEKDTI
CELCGESHPYPVTYHMRQAHPGCGRYAGGQGYNSIGHFCGGWAGNCGDGGIGGSTWYLVC
DRCREKYLREKQAAAREKVKQSRRKPMQVKTPRALPTMEAHQVIKANALFLLSLSSAAEP
SILCYHPAKPFQSQLPSVKEGISEDLPVKMPCLYLQTLARHHHENFVGYQDDNLFQDEMR
YLRSTSVPAPYISVTPDASPNVFEEPESNMKSMPPSLETSPITDTDLAKRTVFQRSYSVV
ASEYDKQHSILPARVKAIPRRRVNSGDTEVGSSLLRHPSPELSRLISAHSSLSKGERNFQ
WPVLAFVIQHHDLEGLEIAMKQALRKSACRVFAMEAFNWLLCNVIQTTSLHDILWHFVAS
LTPAPVEPEEEEDEENKTSKENSEQEKDTRVCEHPLSDIVIAGEAAHPLPHTFHRLLQTI
SDLMMSLPSGSSLQQMALRCWSLKFKQSDHQFLHQSNVFHHINNILSKSDDGDSEESFSI
SIQSGFEAMSQELCIVMCLKDLTSIVDIKTSSRPAMIGSLTDGSTETFWESGDEDKNKTK
NITINCVKGINARYVSVHVDNSRDLGNKVTSMTFLTGKAVEDLCRIKQVDLDSRHIGWVT
SELPGGDNHIIKIELKGPENTLRVRQVKVLGWKDGESTKIAGQISASVAQQRNCEAETLR
VFRLITSQVFGKLISGDAEPTPEQEEKALLSSPEGEEKVYNATSDADLKEHMVGIIFSRS
KLTNLQKQVCAHIVQAIRMEATRVREEWEHAISSKENANSQPNDEDASSDAYCFELLSMV
LALSGSNVGRQYLAQQLTLLQDLFSLLHTASPRVQRQVTSLLRRVLPEVTPSRLASIIGV
KSLPPADISDIIHSTEKGDWNKLGILDMFLGCIAKALTVQLKAKGTTITGTAGTTVGKGV
TTVTLPMIFNSSYLRRGESHWWMKGSTPTQISEIIIKLIKDMAAGHLSEAWSRVTKNAIA
ETIIALTKMEEEFRSPVRCIATTRLWLALASLCVLDQDHVDRLSSGRWMGKDGQQKQMPM
CDNHDDGETAAIILCNVCGNLCTDCDRFLHLHRRTKTHQRQVFKEEEEAIKVDLHEGCGR
TKLFWLMALADSKTMKAMVEFREHTGKPTTSSSEACRFCGSRSGTELSAVGSVCSDADCQ
EYAKIACSKTHPCGHPCGGVKNEEHCLPCLHGCDKSATSLKQDADDMCMICFTEALSAAP
AIQLDCSHIFHLQCCRRVLENRWLGPRITFGFISCPICKNKINHIVLKDLLDPIKELYED
VRRKALMRLEYEGLHKSEAITTPGVRFYNDPAGYAMNRYAYYVCYKCRKAYFGGEARCDA
EAGRGDDYDPRELICGACSDVSRAQMCPKHGTDFLEYKCRYCCSVAVFFCFGTTHFCNAC
HDDFQRMTSIPKEELPHCPAGPKGKQLEGTECPLHVVHPPTGEEFALGCGVCRNAHTF
Function
Atypical E3 ubiquitin-protein ligase which specifically mediates ubiquitination of threonine and serine residues on target proteins, instead of ubiquitinating lysine residues. Shows esterification activity towards both threonine and serine, with a preference for threonine, and acts via two essential catalytic cysteine residues that relay ubiquitin to its substrate via thioester intermediates. Interacts with the E2 enzymes UBE2D1, UBE2D3, UBE2E1 and UBE2L3. Plays a key role in neural development, probably by mediating ubiquitination of threonine residues on target proteins (Probable). Involved in different processes such as regulation of neurite outgrowth, synaptic growth, synaptogenesis and axon degeneration. Required for the formation of major central nervous system axon tracts. Required for proper axon growth by regulating axon navigation and axon branching: acts by regulating the subcellular location and stability of MAP3K12/DLK. Required for proper localization of retinogeniculate projections but not for eye-specific segregation. Regulates axon guidance in the olfactory system. Involved in Wallerian axon degeneration, an evolutionarily conserved process that drives the loss of damaged axons: acts by promoting destabilization of NMNAT2, probably via ubiquitination of NMNAT2. Catalyzes ubiquitination of threonine and/or serine residues on NMNAT2, consequences of threonine and/or serine ubiquitination are however unknown. Regulates the internalization of TRPV1 in peripheral sensory neurons. Mediates ubiquitination and subsequent proteasomal degradation of TSC2/tuberin. Independently of the E3 ubiquitin-protein ligase activity, also acts as a guanosine exchange factor (GEF) for RAN in neurons of dorsal root ganglia. May function as a facilitator or regulator of transcriptional activation by MYC. Acts in concert with HUWE1 to regulate the circadian clock gene expression by promoting the lithium-induced ubiquination and degradation of NR1D1.
Tissue Specificity
Expressed in all tissues examined, expression is exceptionally abundant in brain and thymus. Colocalizes with TSC1 and TSC2 along the neurites and in the growth cones. Highly expressed in peripheral and central neurons. Colocalized with TSC1 in one of the filopodial extensions at the tip of a growth cone.

Molecular Interaction Atlas (MIA) of This DOT

12 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Colorectal carcinoma DIS5PYL0 Definitive Biomarker [1]
Neoplasm DISZKGEW Definitive Biomarker [1]
Colon cancer DISVC52G Strong Genetic Variation [2]
Colon carcinoma DISJYKUO Strong Biomarker [3]
Pre-eclampsia DISY7Q29 Strong Genetic Variation [4]
Promyelocytic leukaemia DISYGG13 Strong Biomarker [5]
Vitiligo DISR05SL Strong Biomarker [6]
Chronic obstructive pulmonary disease DISQCIRF moderate Biomarker [7]
leukaemia DISS7D1V moderate Biomarker [8]
Leukemia DISNAKFL moderate Biomarker [8]
Human papillomavirus infection DISX61LX Limited Biomarker [9]
Squamous cell carcinoma DISQVIFL Limited Biomarker [10]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Mitoxantrone DMM39BF Approved E3 ubiquitin-protein ligase MYCBP2 (MYCBP2) affects the response to substance of Mitoxantrone. [30]
------------------------------------------------------------------------------------
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of E3 ubiquitin-protein ligase MYCBP2 (MYCBP2). [11]
Quercetin DM3NC4M Approved Quercetin increases the phosphorylation of E3 ubiquitin-protein ligase MYCBP2 (MYCBP2). [15]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of E3 ubiquitin-protein ligase MYCBP2 (MYCBP2). [15]
Coumarin DM0N8ZM Investigative Coumarin affects the phosphorylation of E3 ubiquitin-protein ligase MYCBP2 (MYCBP2). [15]
------------------------------------------------------------------------------------
17 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of E3 ubiquitin-protein ligase MYCBP2 (MYCBP2). [12]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of E3 ubiquitin-protein ligase MYCBP2 (MYCBP2). [13]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of E3 ubiquitin-protein ligase MYCBP2 (MYCBP2). [14]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of E3 ubiquitin-protein ligase MYCBP2 (MYCBP2). [16]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of E3 ubiquitin-protein ligase MYCBP2 (MYCBP2). [17]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of E3 ubiquitin-protein ligase MYCBP2 (MYCBP2). [18]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of E3 ubiquitin-protein ligase MYCBP2 (MYCBP2). [19]
Epigallocatechin gallate DMCGWBJ Phase 3 Epigallocatechin gallate increases the expression of E3 ubiquitin-protein ligase MYCBP2 (MYCBP2). [20]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of E3 ubiquitin-protein ligase MYCBP2 (MYCBP2). [21]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of E3 ubiquitin-protein ligase MYCBP2 (MYCBP2). [22]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of E3 ubiquitin-protein ligase MYCBP2 (MYCBP2). [23]
Celastrol DMWQIJX Preclinical Celastrol decreases the expression of E3 ubiquitin-protein ligase MYCBP2 (MYCBP2). [24]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of E3 ubiquitin-protein ligase MYCBP2 (MYCBP2). [25]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of E3 ubiquitin-protein ligase MYCBP2 (MYCBP2). [26]
Milchsaure DM462BT Investigative Milchsaure increases the expression of E3 ubiquitin-protein ligase MYCBP2 (MYCBP2). [27]
Coumestrol DM40TBU Investigative Coumestrol decreases the expression of E3 ubiquitin-protein ligase MYCBP2 (MYCBP2). [28]
EPZ-004777 DMLN4V5 Investigative EPZ-004777 increases the expression of E3 ubiquitin-protein ligase MYCBP2 (MYCBP2). [29]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 Drug(s)

References

1 A meta-analysis of the prevalence of somatic mutations in the hMLH1 and hMSH2 genes in colorectal cancer.Colorectal Dis. 2012 Mar;14(3):e80-9. doi: 10.1111/j.1463-1318.2011.02858.x.
2 A mutational comparison of adult and adolescent and young adult (AYA) colon cancer.Cancer. 2018 Mar 1;124(5):1070-1082. doi: 10.1002/cncr.31136. Epub 2017 Nov 30.
3 Epigenetically regulated miR-1247 functions as a novel tumour suppressor via MYCBP2 in methylator colon cancers.Br J Cancer. 2018 Nov;119(10):1267-1277. doi: 10.1038/s41416-018-0249-9. Epub 2018 Oct 15.
4 Genome-wide association study of pre-eclampsia detects novel maternal single nucleotide polymorphisms and copy-number variants in subsets of the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study cohort.Ann Hum Genet. 2013 Jul;77(4):277-87. doi: 10.1111/ahg.12021. Epub 2013 Apr 2.
5 The Mutational Landscape of Acute Promyelocytic Leukemia Reveals an Interacting Network of Co-Occurrences and Recurrent Mutations.PLoS One. 2016 Feb 17;11(2):e0148346. doi: 10.1371/journal.pone.0148346. eCollection 2016.
6 Association of ACE gene I/D polymorphism with vitiligo: a meta-analysis.Arch Dermatol Res. 2013 Jul;305(5):365-70. doi: 10.1007/s00403-013-1315-z. Epub 2013 Jan 17.
7 Effect of polymorphisms in the 2-adrenergic receptor on the susceptibility and pulmonary function of patients with chronic obstructive pulmonary disease: a meta analysis.Chin Med J (Engl). 2012 Jun;125(12):2213-8.
8 Clinical significance of high c-MYC and low MYCBP2 expression and their association with Ikaros dysfunction in adult acute lymphoblastic leukemia.Oncotarget. 2015 Dec 8;6(39):42300-11. doi: 10.18632/oncotarget.5982.
9 Association between the vaginal microbiome and high-risk human papillomavirus infection in pregnant Chinese women.BMC Infect Dis. 2019 Aug 1;19(1):677. doi: 10.1186/s12879-019-4279-6.
10 The distribution of human papillomavirus genotypes in cervical cancer and intraepithelial neoplasia lesions among Chinese women in Yunnan Province.J Infect Public Health. 2018 Jan-Feb;11(1):105-110. doi: 10.1016/j.jiph.2017.06.012. Epub 2017 Jul 8.
11 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
12 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
13 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
14 Persistent and non-persistent changes in gene expression result from long-term estrogen exposure of MCF-7 breast cancer cells. J Steroid Biochem Mol Biol. 2011 Feb;123(3-5):140-50.
15 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
16 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
17 Essential role of cell cycle regulatory genes p21 and p27 expression in inhibition of breast cancer cells by arsenic trioxide. Med Oncol. 2011 Dec;28(4):1225-54.
18 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
19 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
20 Epigallocatechin-3-gallate (EGCG) protects against chromate-induced toxicity in vitro. Toxicol Appl Pharmacol. 2012 Jan 15;258(2):166-75.
21 Transcriptional signature of human macrophages exposed to the environmental contaminant benzo(a)pyrene. Toxicol Sci. 2010 Apr;114(2):247-59.
22 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
23 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
24 Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. Cancer Cell. 2006 Oct;10(4):321-30.
25 Environmental pollutant induced cellular injury is reflected in exosomes from placental explants. Placenta. 2020 Jan 1;89:42-49. doi: 10.1016/j.placenta.2019.10.008. Epub 2019 Oct 17.
26 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
27 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
28 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
29 Histone methyltransferase DOT1L coordinates AR and MYC stability in prostate cancer. Nat Commun. 2020 Aug 19;11(1):4153. doi: 10.1038/s41467-020-18013-7.
30 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.