General Information of Drug Off-Target (DOT) (ID: OTKES4YR)

DOT Name Cytoplasmic polyadenylation element-binding protein 2 (CPEB2)
Synonyms CPE-BP2; CPE-binding protein 2; hCPEB-2
Gene Name CPEB2
Related Disease
Advanced cancer ( )
Breast cancer ( )
Breast carcinoma ( )
Cardiovascular disease ( )
Colorectal carcinoma ( )
Neoplasm ( )
Triple negative breast cancer ( )
Nasopharyngeal carcinoma ( )
UniProt ID
CPEB2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF16366 ; PF16367
Sequence
MPPPSPDSENGFYPGLPSSMNPAFFPSFSPVSPHGCTGLSVPTSGGGGGGFGGPFSATAV
PPPPPPAMNIPQQQPPPPAAPQQPQSRRSPVSPQLQQQHQAAAAAFLQQRNSYNHHQPLL
KQSPWSNHQSSGWGTGSMSWGAMHGRDHRRTGNMGIPGTMNQISPLKKPFSGNVIAPPKF
TRSTPSLTPKSWIEDNVFRTDNNSNTLLPLQVRSSLQLPAWGSDSLQDSWCTAAGTSRID
QDRSRMYDSLNMHSLENSLIDIMRAEHDPLKGRLSYPHPGTDNLLMLNGRSSLFPIDDGL
LDDGHSDQVGVLNSPTCYSAHQNGERIERFSRKVFVGGLPPDIDEDEITASFRRFGPLVV
DWPHKAESKSYFPPKGYAFLLFQEESSVQALIDACIEEDGKLYLCVSSPTIKDKPVQIRP
WNLSDSDFVMDGSQPLDPRKTIFVGGVPRPLRAVELAMIMDRLYGGVCYAGIDTDPELKY
PKGAGRVAFSNQQSYIAAISARFVQLQHGDIDKRVEVKPYVLDDQMCDECQGARCGGKFA
PFFCANVTCLQYYCEFCWANIHSRAGREFHKPLVKEGADRPRQIHFRWN
Function
May play a role in translational regulation of stored mRNAs in transcriptionally inactive haploid spermatids. Binds to poly(U) RNA oligomers. Required for cell cycle progression, specifically for the transition from metaphase to anaphase.
KEGG Pathway
Oocyte meiosis (hsa04114 )
Progesterone-mediated oocyte maturation (hsa04914 )

Molecular Interaction Atlas (MIA) of This DOT

8 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Advanced cancer DISAT1Z9 Definitive Biomarker [1]
Breast cancer DIS7DPX1 Strong Altered Expression [2]
Breast carcinoma DIS2UE88 Strong Altered Expression [2]
Cardiovascular disease DIS2IQDX Strong Genetic Variation [3]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [4]
Neoplasm DISZKGEW Strong Biomarker [2]
Triple negative breast cancer DISAMG6N moderate Altered Expression [5]
Nasopharyngeal carcinoma DISAOTQ0 Limited Biomarker [6]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Cytoplasmic polyadenylation element-binding protein 2 (CPEB2). [7]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Cytoplasmic polyadenylation element-binding protein 2 (CPEB2). [25]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the methylation of Cytoplasmic polyadenylation element-binding protein 2 (CPEB2). [28]
------------------------------------------------------------------------------------
20 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Cytoplasmic polyadenylation element-binding protein 2 (CPEB2). [8]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Cytoplasmic polyadenylation element-binding protein 2 (CPEB2). [9]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Cytoplasmic polyadenylation element-binding protein 2 (CPEB2). [10]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Cytoplasmic polyadenylation element-binding protein 2 (CPEB2). [11]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Cytoplasmic polyadenylation element-binding protein 2 (CPEB2). [12]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Cytoplasmic polyadenylation element-binding protein 2 (CPEB2). [13]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Cytoplasmic polyadenylation element-binding protein 2 (CPEB2). [14]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Cytoplasmic polyadenylation element-binding protein 2 (CPEB2). [15]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Cytoplasmic polyadenylation element-binding protein 2 (CPEB2). [16]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Cytoplasmic polyadenylation element-binding protein 2 (CPEB2). [17]
Methotrexate DM2TEOL Approved Methotrexate decreases the expression of Cytoplasmic polyadenylation element-binding protein 2 (CPEB2). [18]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Cytoplasmic polyadenylation element-binding protein 2 (CPEB2). [19]
Folic acid DMEMBJC Approved Folic acid decreases the expression of Cytoplasmic polyadenylation element-binding protein 2 (CPEB2). [20]
Demecolcine DMCZQGK Approved Demecolcine increases the expression of Cytoplasmic polyadenylation element-binding protein 2 (CPEB2). [21]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Cytoplasmic polyadenylation element-binding protein 2 (CPEB2). [22]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Cytoplasmic polyadenylation element-binding protein 2 (CPEB2). [23]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of Cytoplasmic polyadenylation element-binding protein 2 (CPEB2). [24]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Cytoplasmic polyadenylation element-binding protein 2 (CPEB2). [26]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Cytoplasmic polyadenylation element-binding protein 2 (CPEB2). [21]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Cytoplasmic polyadenylation element-binding protein 2 (CPEB2). [27]
------------------------------------------------------------------------------------
⏷ Show the Full List of 20 Drug(s)

References

1 Splice variants of cytosolic polyadenylation element-binding protein 2 (CPEB2) differentially regulate pathways linked to cancer metastasis.J Biol Chem. 2017 Oct 27;292(43):17909-17918. doi: 10.1074/jbc.M117.810127. Epub 2017 Sep 13.
2 Tumor suppressor role of cytoplasmic polyadenylation element binding protein 2 (CPEB2) in human mammary epithelial cells.BMC Cancer. 2019 Jun 11;19(1):561. doi: 10.1186/s12885-019-5771-5.
3 Leveraging Polygenic Functional Enrichment to Improve GWAS Power.Am J Hum Genet. 2019 Jan 3;104(1):65-75. doi: 10.1016/j.ajhg.2018.11.008. Epub 2018 Dec 27.
4 Identification of microRNA 885-5p as a novel regulator of tumor metastasis by targeting CPEB2 in colorectal cancer.Oncotarget. 2017 Apr 18;8(16):26858-26870. doi: 10.18632/oncotarget.15844.
5 Serine/Arginine-Rich Splicing Factor 3 Modulates the Alternative Splicing of Cytoplasmic Polyadenylation Element Binding Protein 2.Mol Cancer Res. 2019 Sep;17(9):1920-1930. doi: 10.1158/1541-7786.MCR-18-1291. Epub 2019 May 28.
6 LncRNA CCAT1 modulates the sensitivity of paclitaxel in nasopharynx cancers cells via miR-181a/CPEB2 axis.Cell Cycle. 2017 Apr 18;16(8):795-801. doi: 10.1080/15384101.2017.1301334. Epub 2017 Mar 30.
7 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
8 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
9 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
10 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
11 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
12 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
13 Estrogen-responsive genes newly found to be modified by TCDD exposure in human cell lines and mouse systems. Mol Cell Endocrinol. 2007 Jun 30;272(1-2):38-49.
14 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
15 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
16 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
17 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
18 Global molecular effects of tocilizumab therapy in rheumatoid arthritis synovium. Arthritis Rheumatol. 2014 Jan;66(1):15-23.
19 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
20 Folic acid supplementation dysregulates gene expression in lymphoblastoid cells--implications in nutrition. Biochem Biophys Res Commun. 2011 Sep 9;412(4):688-92. doi: 10.1016/j.bbrc.2011.08.027. Epub 2011 Aug 16.
21 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
22 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
23 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
24 Synergistic activity of BET protein antagonist-based combinations in mantle cell lymphoma cells sensitive or resistant to ibrutinib. Blood. 2015 Sep 24;126(13):1565-74.
25 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
26 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
27 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
28 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.