General Information of Drug Off-Target (DOT) (ID: OTOSKSFH)

DOT Name Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial (ETFDH)
Synonyms ETF-QO; ETF-ubiquinone oxidoreductase; EC 1.5.5.1; Electron-transferring-flavoprotein dehydrogenase; ETF dehydrogenase
Gene Name ETFDH
Related Disease
Hepatocellular carcinoma ( )
Multiple acyl-CoA dehydrogenase deficiency ( )
Carnitine palmitoyltransferase II deficiency ( )
Coenzyme Q10 deficiency ( )
Metabolic disorder ( )
Obesity ( )
Dorfman-Chanarin disease ( )
Hypoglycemia ( )
Neutral lipid storage myopathy ( )
Systemic primary carnitine deficiency disease ( )
UniProt ID
ETFD_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
1.5.5.1
Pfam ID
PF05187 ; PF21162 ; PF01946
Sequence
MLVPLAKLSCLAYQCFHALKIKKNYLPLCATRWSSTSTVPRITTHYTIYPRDKDKRWEGV
NMERFAEEADVVIVGAGPAGLSAAVRLKQLAVAHEKDIRVCLVEKAAQIGAHTLSGACLD
PGAFKELFPDWKEKGAPLNTPVTEDRFGILTEKYRIPVPILPGLPMNNHGNYIVRLGHLV
SWMGEQAEALGVEVYPGYAAAEVLFHDDGSVKGIATNDVGIQKDGAPKATFERGLELHAK
VTIFAEGCHGHLAKQLYKKFDLRANCEPQTYGIGLKELWVIDEKNWKPGRVDHTVGWPLD
RHTYGGSFLYHLNEGEPLVALGLVVGLDYQNPYLSPFREFQRWKHHPSIRPTLEGGKRIA
YGARALNEGGFQSIPKLTFPGGLLIGCSPGFMNVPKIKGTHTAMKSGILAAESIFNQLTS
ENLQSKTIGLHVTEYEDNLKNSWVWKELYSVRNIRPSCHGVLGVYGGMIYTGIFYWILRG
MEPWTLKHKGSDFERLKPAKDCTPIEYPKPDGQISFDLLSSVALSGTNHEHDQPAHLTLR
DDSIPVNRNLSIYDGPEQRFCPAGVYEFVPVEQGDGFRLQINAQNCVHCKTCDIKDPSQN
INWVVPEGGGGPAYNGM
Function Accepts electrons from ETF and reduces ubiquinone.
Reactome Pathway
Respiratory electron transport (R-HSA-611105 )
BioCyc Pathway
MetaCyc:HS10326-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

10 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Hepatocellular carcinoma DIS0J828 Definitive Altered Expression [1]
Multiple acyl-CoA dehydrogenase deficiency DISEFBN7 Definitive Autosomal recessive [2]
Carnitine palmitoyltransferase II deficiency DIS3GFD9 Strong Genetic Variation [3]
Coenzyme Q10 deficiency DIS1HGDF Strong Genetic Variation [4]
Metabolic disorder DIS71G5H Strong Genetic Variation [5]
Obesity DIS47Y1K Strong Biomarker [6]
Dorfman-Chanarin disease DISKKT3R Limited Biomarker [7]
Hypoglycemia DISRCKR7 Limited Biomarker [8]
Neutral lipid storage myopathy DISR9UYD Limited Biomarker [7]
Systemic primary carnitine deficiency disease DIS9OPZ4 Limited Biomarker [7]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
16 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial (ETFDH). [9]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial (ETFDH). [10]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial (ETFDH). [11]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial (ETFDH). [12]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial (ETFDH). [13]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial (ETFDH). [14]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial (ETFDH). [15]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial (ETFDH). [17]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial (ETFDH). [18]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial (ETFDH). [19]
Isotretinoin DM4QTBN Approved Isotretinoin decreases the expression of Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial (ETFDH). [20]
Fenofibrate DMFKXDY Approved Fenofibrate increases the expression of Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial (ETFDH). [21]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial (ETFDH). [22]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial (ETFDH). [23]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial (ETFDH). [24]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial (ETFDH). [25]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial (ETFDH). [16]
------------------------------------------------------------------------------------

References

1 Expression and significance of ETFDH in hepatocellular carcinoma.Pathol Res Pract. 2019 Dec;215(12):152702. doi: 10.1016/j.prp.2019.152702. Epub 2019 Oct 23.
2 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
3 Disorders of fatty acid oxidation and autosomal recessive polycystic kidney disease-different clinical entities and comparable perinatal renal abnormalities.Pediatr Nephrol. 2017 May;32(5):791-800. doi: 10.1007/s00467-016-3556-5. Epub 2017 Jan 12.
4 The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene.Brain. 2007 Aug;130(Pt 8):2037-44. doi: 10.1093/brain/awm054. Epub 2007 Apr 5.
5 ETFDH mutations, CoQ10 levels, and respiratory chain activities in patients with riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency.Neuromuscul Disord. 2009 Mar;19(3):212-6. doi: 10.1016/j.nmd.2009.01.008. Epub 2009 Feb 26.
6 Orchestrated downregulation of genes involved in oxidative metabolic pathways in obese vs. lean high-fat young male consumers.J Physiol Biochem. 2011 Mar;67(1):15-26. doi: 10.1007/s13105-010-0044-4. Epub 2010 Sep 30.
7 Clinical and genetic analysis of lipid storage myopathies.Muscle Nerve. 2009 Mar;39(3):333-42. doi: 10.1002/mus.21167.
8 Risk of sudden death and acute life-threatening events in patients with glutaric acidemia type II.Mol Genet Metab. 2008 Jan;93(1):36-9. doi: 10.1016/j.ymgme.2007.09.015. Epub 2007 Oct 31.
9 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
10 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
11 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
12 Human 3D multicellular microtissues: an upgraded model for the in vitro mechanistic investigation of inflammation-associated drug toxicity. Toxicol Lett. 2019 Sep 15;312:34-44.
13 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
14 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
15 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
16 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
17 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
18 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
19 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
20 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
21 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
22 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
23 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
24 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
25 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.