General Information of Drug Off-Target (DOT) (ID: OTPO8EXU)

DOT Name RNA-binding protein 38 (RBM38)
Synonyms CLL-associated antigen KW-5; HSRNASEB; RNA-binding motif protein 38; RNA-binding region-containing protein 1; ssDNA-binding protein SEB4
Gene Name RBM38
Related Disease
Breast cancer ( )
Breast carcinoma ( )
Breast neoplasm ( )
Clear cell renal carcinoma ( )
Colon cancer ( )
Colon carcinoma ( )
Esophageal adenocarcinoma ( )
Estrogen-receptor positive breast cancer ( )
Fatty liver disease ( )
Hepatocellular carcinoma ( )
Malignant soft tissue neoplasm ( )
Neoplasm ( )
Non-small-cell lung cancer ( )
Renal cell carcinoma ( )
Anemia ( )
Hydrops fetalis ( )
Advanced cancer ( )
Carcinoma of liver and intrahepatic biliary tract ( )
Epithelial ovarian cancer ( )
Liver cancer ( )
Lymphoma ( )
Ovarian cancer ( )
Ovarian neoplasm ( )
UniProt ID
RBM38_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2CQD; 6JVX; 6JVY
Pfam ID
PF00076
Sequence
MLLQPAPCAPSAGFPRPLAAPGAMHGSQKDTTFTKIFVGGLPYHTTDASLRKYFEGFGDI
EEAVVITDRQTGKSRGYGFVTMADRAAAERACKDPNPIIDGRKANVNLAYLGAKPRSLQT
GFAIGVQQLHPTLIQRTYGLTPHYIYPPAIVQPSVVIPAAPVPSLSSPYIEYTPASPAYA
QYPPATYDQYPYAASPATAASFVGYSYPAAVPQALSAAAPAGTTFVQYQAPQLQPDRMQ
Function
RNA-binding protein that specifically bind the 3'-UTR of CDKN1A transcripts, leading to maintain the stability of CDKN1A transcripts, thereby acting as a mediator of the p53/TP53 family to regulate CDKN1A. CDKN1A is a cyclin-dependent kinase inhibitor transcriptionally regulated by the p53/TP53 family to induce cell cycle arrest. Isoform 1, but not isoform 2, has the ability to induce cell cycle arrest in G1 and maintain the stability of CDKN1A transcripts induced by p53/TP53. Also acts as a mRNA splicing factor. Specifically regulates the expression of FGFR2-IIIb, an epithelial cell-specific isoform of FGFR2. Plays a role in myogenic differentiation; (Microbial infection) Essential factor for the splicing of the pre-mRNAs of human parvovirus B19 (B19V) and for the expression of B19V 11-kDa protein, which enhances viral replication.

Molecular Interaction Atlas (MIA) of This DOT

23 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Breast cancer DIS7DPX1 Strong Biomarker [1]
Breast carcinoma DIS2UE88 Strong Biomarker [1]
Breast neoplasm DISNGJLM Strong Altered Expression [2]
Clear cell renal carcinoma DISBXRFJ Strong Biomarker [3]
Colon cancer DISVC52G Strong Altered Expression [4]
Colon carcinoma DISJYKUO Strong Altered Expression [4]
Esophageal adenocarcinoma DISODWFP Strong Biomarker [5]
Estrogen-receptor positive breast cancer DIS1H502 Strong Altered Expression [6]
Fatty liver disease DIS485QZ Strong Biomarker [7]
Hepatocellular carcinoma DIS0J828 Strong Altered Expression [8]
Malignant soft tissue neoplasm DISTC6NO Strong Altered Expression [9]
Neoplasm DISZKGEW Strong Biomarker [10]
Non-small-cell lung cancer DIS5Y6R9 Strong Biomarker [11]
Renal cell carcinoma DISQZ2X8 Strong Biomarker [3]
Anemia DISTVL0C moderate Genetic Variation [12]
Hydrops fetalis DISD9BBF moderate Genetic Variation [12]
Advanced cancer DISAT1Z9 Limited Biomarker [10]
Carcinoma of liver and intrahepatic biliary tract DIS8WA0W Limited Altered Expression [8]
Epithelial ovarian cancer DIS56MH2 Limited Altered Expression [13]
Liver cancer DISDE4BI Limited Altered Expression [8]
Lymphoma DISN6V4S Limited Altered Expression [14]
Ovarian cancer DISZJHAP Limited Altered Expression [13]
Ovarian neoplasm DISEAFTY Limited Altered Expression [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 23 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of RNA-binding protein 38 (RBM38). [15]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of RNA-binding protein 38 (RBM38). [21]
------------------------------------------------------------------------------------
15 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of RNA-binding protein 38 (RBM38). [16]
Tretinoin DM49DUI Approved Tretinoin increases the expression of RNA-binding protein 38 (RBM38). [17]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of RNA-binding protein 38 (RBM38). [18]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of RNA-binding protein 38 (RBM38). [19]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of RNA-binding protein 38 (RBM38). [20]
Quercetin DM3NC4M Approved Quercetin increases the expression of RNA-binding protein 38 (RBM38). [22]
Temozolomide DMKECZD Approved Temozolomide increases the expression of RNA-binding protein 38 (RBM38). [23]
Triclosan DMZUR4N Approved Triclosan decreases the expression of RNA-binding protein 38 (RBM38). [24]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of RNA-binding protein 38 (RBM38). [25]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of RNA-binding protein 38 (RBM38). [22]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of RNA-binding protein 38 (RBM38). [26]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of RNA-binding protein 38 (RBM38). [27]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of RNA-binding protein 38 (RBM38). [28]
KOJIC ACID DMP84CS Investigative KOJIC ACID decreases the expression of RNA-binding protein 38 (RBM38). [29]
QUERCITRIN DM1DH96 Investigative QUERCITRIN increases the expression of RNA-binding protein 38 (RBM38). [30]
------------------------------------------------------------------------------------
⏷ Show the Full List of 15 Drug(s)

References

1 RNA Binding Protein RNPC1 Inhibits Breast Cancer Cell Metastasis via Activating STARD13-Correlated ceRNA Network.Mol Pharm. 2018 Jun 4;15(6):2123-2132. doi: 10.1021/acs.molpharmaceut.7b01123. Epub 2018 May 15.
2 RNA-binding protein RNPC1: acting as a tumor suppressor in breast cancer.BMC Cancer. 2014 May 7;14:322. doi: 10.1186/1471-2407-14-322.
3 The expression of RNA-binding protein RBM38 decreased in renal cell carcinoma and represses renal cancer cell proliferation, migration, and invasion.Tumour Biol. 2017 May;39(5):1010428317701635. doi: 10.1177/1010428317701635.
4 Cancer-related serological recognition of human colon cancer: identification of potential diagnostic and immunotherapeutic targets.Cancer Res. 2002 Jul 15;62(14):4041-7.
5 Radiation sensitivity of esophageal adenocarcinoma: the contribution of the RNA-binding protein RNPC1 and p21-mediated cell cycle arrest to radioresistance.Radiat Res. 2012 Mar;177(3):272-9. doi: 10.1667/rr2776.1. Epub 2012 Jan 3.
6 Estrogen receptor (ER) was regulated by RNPC1 stabilizing mRNA in ER positive breast cancer.Oncotarget. 2015 May 20;6(14):12264-78. doi: 10.18632/oncotarget.3654.
7 The Rbm38-p63 feedback loop is critical for tumor suppression and longevity.Oncogene. 2018 May;37(21):2863-2872. doi: 10.1038/s41388-018-0176-5. Epub 2018 Mar 9.
8 RBM38 plays a tumor-suppressor role via stabilizing the p53-mdm2 loop function in hepatocellular carcinoma.J Exp Clin Cancer Res. 2018 Sep 3;37(1):212. doi: 10.1186/s13046-018-0852-x.
9 Integrative genomic analyses of the RNA-binding protein, RNPC1, and its potential role in cancer prediction.Int J Mol Med. 2015 Aug;36(2):473-84. doi: 10.3892/ijmm.2015.2237. Epub 2015 Jun 5.
10 Disruption of the Rbm38-eIF4E Complex with a Synthetic Peptide Pep8 Increases p53 Expression.Cancer Res. 2019 Feb 15;79(4):807-818. doi: 10.1158/0008-5472.CAN-18-2209. Epub 2018 Dec 27.
11 RNPC1 inhibits non-small cell lung cancer progression via regulating miR-181a/CASC2 axis.Biotechnol Lett. 2018 Mar;40(3):543-550. doi: 10.1007/s10529-017-2504-1. Epub 2017 Dec 29.
12 RNA Binding Protein RBM38 Regulates Expression of the 11-Kilodalton Protein of Parvovirus B19, Which Facilitates Viral DNA Replication.J Virol. 2018 Mar 28;92(8):e02050-17. doi: 10.1128/JVI.02050-17. Print 2018 Apr 15.
13 RBM38 is a direct transcriptional target of E2F1 that limits E2F1-induced proliferation.Mol Cancer Res. 2012 Sep;10(9):1169-77. doi: 10.1158/1541-7786.MCR-12-0331. Epub 2012 Jul 13.
14 Translational repression of p53 by RNPC1, a p53 target overexpressed in lymphomas.Genes Dev. 2011 Jul 15;25(14):1528-43. doi: 10.1101/gad.2069311.
15 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
16 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
17 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
18 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
19 The thioxotriazole copper(II) complex A0 induces endoplasmic reticulum stress and paraptotic death in human cancer cells. J Biol Chem. 2009 Sep 4;284(36):24306-19.
20 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
21 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
22 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
23 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
24 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
25 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
26 Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells. J Biol Chem. 2012 Dec 14;287(51):43137-55.
27 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
28 Bisphenol-A and estradiol exert novel gene regulation in human MCF-7 derived breast cancer cells. Mol Cell Endocrinol. 2004 Jun 30;221(1-2):47-55. doi: 10.1016/j.mce.2004.04.010.
29 Toxicogenomics of kojic acid on gene expression profiling of a375 human malignant melanoma cells. Biol Pharm Bull. 2006 Apr;29(4):655-69.
30 Molecular mechanisms of quercitrin-induced apoptosis in non-small cell lung cancer. Arch Med Res. 2014 Aug;45(6):445-54.