General Information of Disease (ID: DISODWFP)

Disease Name Esophageal adenocarcinoma
Synonyms
esophageal adenocarcinoma; oesophagus adenocarcinoma; adenocarcinoma of the oesophagus; adenocarcinoma of esophagus; adenocarcinoma of the esophagus; esophagus adenocarcinoma; oesophageal adenocarcinoma; adenocarcinoma - oesophagus; adenocarcinoma of oesophagus; adenocarcinoma - esophagus
Definition
A malignant tumor with glandular differentiation arising predominantly from Barrett mucosa in the lower third of the esophagus. Rare examples of esophageal adenocarcinoma deriving from ectopic gastric mucosa in the upper esophagus have also been reported. Grossly, esophageal adenocarcinomas are similar to esophageal squamous cell carcinomas. Microscopically, adenocarcinomas arising in the setting of Barrett esophagus are typically papillary and/or tubular. The prognosis is poor.
Disease Hierarchy
DIS3IHTY: Adenocarcinoma
DISS6G4D: Carcinoma of esophagus
DISODWFP: Esophageal adenocarcinoma
Disease Identifiers
MONDO ID
MONDO_0005028
MESH ID
C562730
UMLS CUI
C0279628
MedGen ID
124636
Orphanet ID
99976
SNOMED CT ID
276803003

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 38 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
AXL TTZPY6J Limited Biomarker [1]
OLFM4 TTK1CX7 Limited Altered Expression [2]
TLR4 TTISGCA Limited Biomarker [3]
CDK9 TT1LVF2 moderate Biomarker [4]
CDKN2A TTFTWQ8 moderate Biomarker [5]
FOXP1 TT0MUCI moderate Biomarker [6]
ANXA10 TT0NL6U Strong Biomarker [7]
APOB TTN1IE2 Strong Genetic Variation [8]
ASPA TT6TLZP Strong Altered Expression [9]
ATP4A TTF1QVM Strong Genetic Variation [10]
BECN1 TT5M7LN Strong Biomarker [11]
CCN1 TTPK79J Strong Altered Expression [12]
CDC25B TTR0SWN Strong Altered Expression [13]
CDK8 TTBJR4L Strong Altered Expression [14]
CFTR TTRLZHP Strong Altered Expression [15]
CRTC1 TT4GO0F Strong Genetic Variation [16]
CTSE TTLXC4Q Strong Altered Expression [17]
EPCAM TTZ8WH4 Strong Biomarker [18]
FGF1 TTMY81X Strong Altered Expression [19]
FKBP5 TT0J5KQ Strong Biomarker [20]
MAGEA4 TT9EQUY Strong Biomarker [21]
MAGEA6 TTJIWMO Strong Altered Expression [22]
MAPKAPK2 TTMUG9D Strong Altered Expression [23]
MMP12 TTXZ0KQ Strong Genetic Variation [24]
MUC5AC TTEL90S Strong Biomarker [25]
NELL1 TT7H4BF Strong Biomarker [26]
NQO2 TTJLP0R Strong Genetic Variation [27]
NR1H4 TTS4UGC Strong Altered Expression [28]
PRKCZ TTBSN0L Strong Biomarker [29]
PTGER2 TT1ZAVI Strong Altered Expression [30]
PTGES TTYLQ8V Strong Biomarker [31]
PTGS1 TT8NGED Strong Biomarker [32]
REG4 TTVZEHU Strong Biomarker [33]
RPS6KB1 TTG0U4H Strong Biomarker [34]
S1PR2 TTVSMOH Strong Biomarker [35]
SERPINB3 TT6QLPX Strong Biomarker [36]
SLC6A8 TTYUHB5 Strong Biomarker [37]
VSIR TT51SK8 Strong Altered Expression [38]
------------------------------------------------------------------------------------
⏷ Show the Full List of 38 DTT(s)
This Disease Is Related to 4 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
ABCC5 DTYVM24 Strong Biomarker [16]
ATP12A DT5NLZA Strong Genetic Variation [10]
SLC35A2 DT0567K Strong Genetic Variation [39]
SLC52A3 DTBVQIO Strong Biomarker [40]
------------------------------------------------------------------------------------
This Disease Is Related to 5 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
AKR1C2 DEOY5ZM Limited Altered Expression [41]
ALDH1A2 DEKN1H4 Strong Genetic Variation [16]
HIF1AN DEY1CBW Strong Genetic Variation [42]
MSRA DEU2ZBY Strong Genetic Variation [16]
UGT2B17 DEAZDL8 Strong Altered Expression [43]
------------------------------------------------------------------------------------
This Disease Is Related to 84 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
AMPD1 OTU17BCI Limited Altered Expression [44]
ARID1A OTRWDV3P Limited Biomarker [45]
BARX1 OT2VP73H Limited Genetic Variation [46]
ETV4 OT8C98UZ Limited Altered Expression [47]
MAX OTKZ0YKM Limited Altered Expression [44]
MEGF8 OT5G38CH Limited Genetic Variation [48]
COX2 OTTMVBJJ moderate Altered Expression [49]
DECR1 OTCDIR6X moderate Biomarker [50]
DOCK2 OTZTS3PA moderate Biomarker [51]
ELMO1 OTY2ORXK moderate Biomarker [51]
FGF13 OTHNNVSG moderate Biomarker [52]
NUDT6 OTCS3NYZ moderate Biomarker [53]
SPART OTIVOS2I moderate Biomarker [51]
A1CF OTJBKFA1 Strong Altered Expression [9]
AFAP1 OTR473H8 Strong Altered Expression [54]
ARF6 OTVV7KJO Strong Biomarker [55]
ASZ1 OTLM93UO Strong Genetic Variation [16]
BCAS3 OTDVAX6B Strong Altered Expression [9]
BFAR OTTBG0V7 Strong Biomarker [56]
CD151 OTF3UZS7 Strong Biomarker [57]
CDH17 OT9EV2XK Strong Biomarker [58]
CDX2 OTCG4TSY Strong Biomarker [59]
CEP72 OTVYNPNL Strong Genetic Variation [16]
CLDN2 OTRF3D6Y Strong Altered Expression [60]
COLQ OT4BHUGQ Strong Genetic Variation [61]
COX1 OTG3O9BN Strong Biomarker [62]
CRNKL1 OTWBQNGU Strong Biomarker [63]
CYGB OTX153DQ Strong Altered Expression [64]
CYLD OT37FKH0 Strong Genetic Variation [61]
EIF4A2 OT08H03R Strong Altered Expression [65]
EIF4G1 OT2CF1E6 Strong Altered Expression [65]
EMX2 OT0V8OYK Strong Biomarker [66]
EPC1 OT3Q25ND Strong Biomarker [67]
EPC2 OTTG0W9R Strong Genetic Variation [67]
ERCC2 OT1C8HQ4 Strong Genetic Variation [68]
ETV1 OT6PMJIK Strong Altered Expression [23]
FOXF1 OT2CJZ5K Strong Genetic Variation [69]
FRZB OTTO3DPY Strong Posttranslational Modification [70]
GDF7 OTNZY74B Strong Genetic Variation [71]
GOLM1 OTOZSV6O Strong Biomarker [72]
GPX7 OTINT9Z4 Strong Altered Expression [73]
HGD OTTKLQOO Strong Biomarker [74]
HTR3C OT65ZLIJ Strong Genetic Variation [16]
ITGA3 OTBCH21D Strong Altered Expression [13]
KHDRBS2 OTEKL45T Strong Genetic Variation [16]
KLF12 OTVH4KD4 Strong Biomarker [75]
LIN54 OTPC9LQI Strong Biomarker [76]
MAGEB6 OTOTV1FU Strong Biomarker [77]
MAP2K6 OTK13JKC Strong Biomarker [78]
MPG OTAHW80B Strong Altered Expression [79]
MSX1 OT5U41ZP Strong Genetic Variation [80]
MUC5B OTPW6K5C Strong Biomarker [25]
MUCL1 OT9QUFL3 Strong Biomarker [81]
MUS81 OTVZ4E60 Strong Biomarker [82]
MYO9B OTQ94R5K Strong Biomarker [83]
NOC2L OTNT7R33 Strong Biomarker [84]
NOX5 OTHTH59G Strong Biomarker [85]
OR12D3 OTQ9XNBB Strong Genetic Variation [16]
OR5V1 OTSYXOD6 Strong Genetic Variation [16]
PIGA OT51UWUR Strong Genetic Variation [86]
PITX1 OTA0UN4C Strong Altered Expression [87]
PKP1 OT9HSQ8F Strong Biomarker [88]
PLCE1 OTJISZOX Strong Biomarker [40]
PTRH2 OTBU39Q1 Strong Altered Expression [89]
RAB40B OTCA9ZF5 Strong Altered Expression [90]
RBM3 OTAJ7R31 Strong Altered Expression [91]
RBM38 OTPO8EXU Strong Biomarker [92]
RBM43 OTANIFBG Strong Genetic Variation [93]
RFC3 OT1MS7AO Strong Biomarker [94]
RND3 OTXMXPIH Strong Genetic Variation [93]
ROPN1L OTRWZJ68 Strong Altered Expression [9]
RRAD OTW2O4GD Strong Posttranslational Modification [95]
SERPINB4 OT88LHZ8 Strong Biomarker [36]
SKI OT4KJ8F6 Strong Biomarker [29]
SMTN OT4R2TYK Strong Biomarker [96]
SPAG11A OTNQ9UB0 Strong Altered Expression [30]
TCOF1 OT4BOYTM Strong Genetic Variation [97]
TMOD1 OTTRYF9Y Strong Genetic Variation [16]
TPPP OTCFMSUF Strong Genetic Variation [16]
TRIM31 OT7VW6RP Strong Altered Expression [98]
TSPAN18 OTHSGPVB Strong Biomarker [81]
APOBEC1 OTY8QX2R Definitive Altered Expression [99]
GATA5 OTO81B63 Definitive Posttranslational Modification [100]
KRT13 OTTYSKGX Definitive Biomarker [101]
------------------------------------------------------------------------------------
⏷ Show the Full List of 84 DOT(s)

References

1 AXL Mediates Esophageal Adenocarcinoma Cell Invasion through Regulation of Extracellular Acidification and Lysosome Trafficking.Neoplasia. 2018 Oct;20(10):1008-1022. doi: 10.1016/j.neo.2018.08.005. Epub 2018 Sep 3.
2 Olfactomedin 4 (OLFM4) expression is associated with nodal metastases in esophageal adenocarcinoma.PLoS One. 2019 Jul 8;14(7):e0219494. doi: 10.1371/journal.pone.0219494. eCollection 2019.
3 Toll-Like Receptor-4 Is a Mediator of Proliferation in Esophageal Adenocarcinoma.Ann Thorac Surg. 2019 Jan;107(1):233-241. doi: 10.1016/j.athoracsur.2018.08.014. Epub 2018 Oct 4.
4 Targeting cyclin-dependent kinase 9 by a novel inhibitor enhances radiosensitization and identifies Axl as a novel downstream target in esophageal adenocarcinoma.Oncotarget. 2019 Jul 23;10(45):4703-4718. doi: 10.18632/oncotarget.27095. eCollection 2019 Jul 23.
5 A systematic review of epigenetic biomarkers in progression from non-dysplastic Barrett's oesophagus to oesophageal adenocarcinoma.BMJ Open. 2018 Jun 30;8(6):e020427. doi: 10.1136/bmjopen-2017-020427.
6 Supportive evidence for FOXP1, BARX1, and FOXF1 as genetic risk loci for the development of esophageal adenocarcinoma.Cancer Med. 2015 Nov;4(11):1700-4. doi: 10.1002/cam4.500. Epub 2015 Aug 15.
7 A comparative analysis by SAGE of gene expression profiles of esophageal adenocarcinoma and esophageal squamous cell carcinoma.Cell Oncol. 2008;30(1):63-75. doi: 10.1155/2008/328529.
8 Gastroesophageal reflux GWAS identifies risk loci that also associate with subsequent severe esophageal diseases.Nat Commun. 2019 Sep 16;10(1):4219. doi: 10.1038/s41467-019-11968-2.
9 Multiple forms of genetic instability within a 2-Mb chromosomal segment of 3q26.3-q27 are associated with development of esophageal adenocarcinoma.Genes Chromosomes Cancer. 2006 Apr;45(4):319-31. doi: 10.1002/gcc.20293.
10 Omeprazole prevents CDX2 and SOX9 expression by inhibiting hedgehog signaling in Barrett's esophagus cells.Clin Sci (Lond). 2019 Feb 12;133(3):483-495. doi: 10.1042/CS20180828. Print 2019 Feb 14.
11 Expression, modulation, and clinical correlates of the autophagy protein Beclin-1 in esophageal adenocarcinoma.Mol Carcinog. 2016 Nov;55(11):1876-1885. doi: 10.1002/mc.22432. Epub 2015 Nov 19.
12 CCN1 induces apoptosis in esophageal adenocarcinoma through p53-dependent downregulation of survivin.J Cell Biochem. 2019 Feb;120(2):2070-2077. doi: 10.1002/jcb.27515. Epub 2018 Sep 11.
13 Transcriptional gene expression profiles of oesophageal adenocarcinoma and normal oesophageal tissues.Anticancer Res. 2003 Jan-Feb;23(1A):161-5.
14 Identifying Cancers Impacted by CDK8/19.Cells. 2019 Aug 3;8(8):821. doi: 10.3390/cells8080821.
15 CFTR inhibits the invasion and growth of esophageal cancer cells by inhibiting the expression of NF-B.Cell Biol Int. 2018 Dec;42(12):1680-1687. doi: 10.1002/cbin.11069.
16 Genome-wide association studies in oesophageal adenocarcinoma and Barrett's oesophagus: a large-scale meta-analysis.Lancet Oncol. 2016 Oct;17(10):1363-1373. doi: 10.1016/S1470-2045(16)30240-6. Epub 2016 Aug 12.
17 High Expression of Cathepsin E in Tissues but Not Blood of Patients with Barrett's Esophagus and Adenocarcinoma.Ann Surg Oncol. 2015 Jul;22(7):2431-8. doi: 10.1245/s10434-014-4155-y. Epub 2014 Oct 28.
18 Identification of Tumor Specific Peptide as EpCAM Ligand and Its Potential Diagnostic and Therapeutic Clinical Application.Mol Pharm. 2019 May 6;16(5):2199-2213. doi: 10.1021/acs.molpharmaceut.9b00185. Epub 2019 Apr 18.
19 Acidic fibroblast growth factor is progressively increased in the development of oesophageal glandular dysplasia and adenocarcinoma.Histopathology. 1999 Jul;35(1):31-7. doi: 10.1046/j.1365-2559.1999.00657.x.
20 Androgen Signaling in Esophageal Adenocarcinoma Cell Lines In Vitro.Dig Dis Sci. 2017 Dec;62(12):3402-3414. doi: 10.1007/s10620-017-4794-5. Epub 2017 Oct 20.
21 Intensity-modulated radiotherapy at high-volume centers improves survival in patients with esophageal adenocarcinoma receiving trimodality therapy.Dis Esophagus. 2019 Aug 1;32(8):doy124. doi: 10.1093/dote/doy124.
22 Investigation into the expression levels of MAGEA6 in esophageal squamous cell carcinoma and esophageal adenocarcinoma tissues.Exp Ther Med. 2019 Sep;18(3):1816-1822. doi: 10.3892/etm.2019.7735. Epub 2019 Jul 5.
23 MK2 and ETV1 Are Prognostic Factors in Esophageal Adenocarcinomas.J Cancer. 2018 Jan 1;9(3):460-468. doi: 10.7150/jca.22310. eCollection 2018.
24 Matrix metalloproteinase 1, 3 and 12 polymorphisms and esophageal adenocarcinoma risk and prognosis.Carcinogenesis. 2009 May;30(5):793-8. doi: 10.1093/carcin/bgp065. Epub 2009 Mar 25.
25 Elucidation of the AGR2 Interactome in Esophageal Adenocarcinoma Cells Identifies a Redox-Sensitive Chaperone Hub for the Quality Control of MUC-5AC.Antioxid Redox Signal. 2019 Nov 20;31(15):1117-1132. doi: 10.1089/ars.2018.7647. Epub 2019 Sep 25.
26 Hypermethylation of the nel-like 1 gene is a common and early event and is associated with poor prognosis in early-stage esophageal adenocarcinoma. Oncogene. 2007 Sep 20;26(43):6332-40. doi: 10.1038/sj.onc.1210461. Epub 2007 Apr 23.
27 Role of NQO1 609C>T and NQO2 -3423G>A gene polymorphisms in esophageal cancer risk in Kashmir valley and meta analysis.Mol Biol Rep. 2012 Sep;39(9):9095-104. doi: 10.1007/s11033-012-1781-y. Epub 2012 Jun 27.
28 TGR5 expression in benign, preneoplastic and neoplastic lesions of Barrett's esophagus: Case series and findings.World J Gastroenterol. 2017 Feb 28;23(8):1338-1344. doi: 10.3748/wjg.v23.i8.1338.
29 Copy number alterations detected by whole-exome and whole-genome sequencing of esophageal adenocarcinoma.Hum Genomics. 2015 Sep 15;9(1):22. doi: 10.1186/s40246-015-0044-0.
30 Prostaglandin EP2 receptor expression is increased in Barrett's oesophagus and oesophageal adenocarcinoma.Aliment Pharmacol Ther. 2010 Feb 1;31(3):440-51. doi: 10.1111/j.1365-2036.2009.04172.x. Epub 2009 Oct 16.
31 NADPH oxidase NOX5-S and nuclear factor B1 mediate acid-induced microsomal prostaglandin E synthase-1 expression in Barrett's esophageal adenocarcinoma cells.Mol Pharmacol. 2013 May;83(5):978-90. doi: 10.1124/mol.112.083287. Epub 2013 Feb 25.
32 Characterization of the prostaglandin E2 pathway in a rat model of esophageal adenocarcinoma.Curr Cancer Drug Targets. 2012 Feb;12(2):132-43. doi: 10.2174/156800912799095199.
33 Genome-Wide Analysis of Barrett's Adenocarcinoma. A First Step Towards Identifying Patients at Risk and Developing Therapeutic Paths.Transl Oncol. 2018 Feb;11(1):116-124. doi: 10.1016/j.tranon.2017.10.003. Epub 2017 Dec 18.
34 RNA Sequencing Identifies Transcriptionally Viable Gene Fusions in Esophageal Adenocarcinomas.Cancer Res. 2016 Oct 1;76(19):5628-5633. doi: 10.1158/0008-5472.CAN-16-0979. Epub 2016 Aug 8.
35 Therapeutic Role of Sphingosine-1-Phosphate Receptor 2 in the Progression of Esophageal Adenocarcinoma.Am J Pathol. 2018 Sep;188(9):1949-1952. doi: 10.1016/j.ajpath.2018.07.001. Epub 2018 Jul 17.
36 Squamous cell carcinoma antigen 1 is associated to poor prognosis in esophageal cancer through immune surveillance impairment and reduced chemosensitivity.Cancer Sci. 2019 May;110(5):1552-1563. doi: 10.1111/cas.13986. Epub 2019 Apr 15.
37 Visceral Adipose Tissue Modulates Radiosensitivity in Oesophageal Adenocarcinoma.Int J Med Sci. 2019 Apr 5;16(4):519-528. doi: 10.7150/ijms.29296. eCollection 2019.
38 The expression of the immune checkpoint regulator VISTA correlates with improved overall survival in pT1/2 tumor stages in esophageal adenocarcinoma.Oncoimmunology. 2019 Feb 27;8(5):e1581546. doi: 10.1080/2162402X.2019.1581546. eCollection 2019.
39 High enzyme activity UGT1A1 or low activity UGT1A8 and UGT2B4 genotypes increase esophageal cancer risk.Int J Oncol. 2012 Jun;40(6):1789-96. doi: 10.3892/ijo.2012.1385. Epub 2012 Feb 22.
40 GWAS-uncovered SNPs in PLCE1 and RFT2 genes are not implicated in Dutch esophageal adenocarcinoma and squamous cell carcinoma etiology.Eur J Cancer Prev. 2013 Sep;22(5):417-9. doi: 10.1097/CEJ.0b013e32835c7f53.
41 Proteomic screening of a cell line model of esophageal carcinogenesis identifies cathepsin D and aldo-keto reductase 1C2 and 1B10 dysregulation in Barrett's esophagus and esophageal adenocarcinoma.J Proteome Res. 2008 May;7(5):1953-62. doi: 10.1021/pr7007835. Epub 2008 Apr 9.
42 Interactions between environmental factors and polymorphisms in angiogenesis pathway genes in esophageal adenocarcinoma risk: a case-only study.Cancer. 2012 Feb 1;118(3):804-11. doi: 10.1002/cncr.26325. Epub 2011 Jul 12.
43 UGT2B17 and miR-224 contribute to hormone dependency trends in adenocarcinoma and squamous cell carcinoma of esophagus.Biosci Rep. 2019 Jul 5;39(7):BSR20190472. doi: 10.1042/BSR20190472. Print 2019 Jul 31.
44 Oesophageal adenocarcinoma is associated with a deregulation in the MYC/MAX/MAD network.Br J Cancer. 2008 Jun 17;98(12):1985-92. doi: 10.1038/sj.bjc.6604398. Epub 2008 May 20.
45 Loss of ARID1A expression is associated with DNA mismatch repair protein deficiency and favorable prognosis in advanced stage surgically resected esophageal adenocarcinoma.Hum Pathol. 2019 Dec;94:1-10. doi: 10.1016/j.humpath.2019.09.004. Epub 2019 Oct 24.
46 An esophageal adenocarcinoma susceptibility locus at 9q22 also confers risk to esophageal squamous cell carcinoma by regulating the function of BARX1.Cancer Lett. 2018 May 1;421:103-111. doi: 10.1016/j.canlet.2018.02.019. Epub 2018 Feb 14.
47 The ERK MAP kinase-PEA3/ETV4-MMP-1 axis is operative in oesophageal adenocarcinoma.Mol Cancer. 2010 Dec 9;9:313. doi: 10.1186/1476-4598-9-313.
48 Decreased selenium-binding protein 1 in esophageal adenocarcinoma results from posttranscriptional and epigenetic regulation and affects chemosensitivity.Clin Cancer Res. 2010 Apr 1;16(7):2009-21. doi: 10.1158/1078-0432.CCR-09-2801. Epub 2010 Mar 23.
49 Cyclo-oxygenase-2 expression is associated with mean standardised uptake value on 18F-Fluorodeoxyglucose positron emission tomography in oesophageal adenocarcinoma.Br J Radiol. 2019 Jul;92(1099):20180668. doi: 10.1259/bjr.20180668. Epub 2019 May 8.
50 Role of Rac1 in regulation of NOX5-S function in Barrett's esophageal adenocarcinoma cells.Am J Physiol Cell Physiol. 2011 Aug;301(2):C413-20. doi: 10.1152/ajpcell.00027.2011. Epub 2011 Apr 27.
51 Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity.Nat Genet. 2013 May;45(5):478-86. doi: 10.1038/ng.2591. Epub 2013 Mar 24.
52 Regulation of FGF-2 by an endogenous antisense RNA: effects on cell adhesion and cell-cycle progression.Mol Carcinog. 2010 Dec;49(12):1031-44. doi: 10.1002/mc.20686.
53 Alternative splicing of the FGF antisense gene: differential subcellular localization in human tissues and esophageal adenocarcinoma.J Mol Med (Berl). 2007 Nov;85(11):1215-28. doi: 10.1007/s00109-007-0219-9. Epub 2007 Jun 14.
54 Long noncoding RNA actin filament-associated protein 1 antisense RNA 1 promotes malignant phenotype through binding with lysine-specific demethylase 1 and repressing HMG box-containing protein 1 in non-small-cell lung cancer.Cancer Sci. 2019 Jul;110(7):2211-2225. doi: 10.1111/cas.14039. Epub 2019 May 29.
55 APE1 Upregulates MMP-14 via Redox-Sensitive ARF6-Mediated Recycling to Promote Cell Invasion of Esophageal Adenocarcinoma.Cancer Res. 2019 Sep 1;79(17):4426-4438. doi: 10.1158/0008-5472.CAN-19-0237. Epub 2019 Jul 15.
56 Role of NADPH oxidase NOX5-S, NF-B, and DNMT1 in acid-induced p16 hypermethylation in Barrett's cells.Am J Physiol Cell Physiol. 2013 Nov 15;305(10):C1069-79. doi: 10.1152/ajpcell.00080.2013. Epub 2013 Sep 11.
57 CD151 Gene and Protein Expression Provides Independent Prognostic Information for Patients with Adenocarcinoma of the Esophagus and Gastroesophageal Junction Treated by Esophagectomy.Ann Surg Oncol. 2016 Dec;23(Suppl 5):746-754. doi: 10.1245/s10434-016-5504-9. Epub 2016 Aug 30.
58 Liver-intestine-cadherin is a sensitive marker of intestinal differentiation during Barrett's carcinogenesis.Dig Dis Sci. 2013 Mar;58(3):699-705. doi: 10.1007/s10620-012-2425-8. Epub 2012 Oct 4.
59 Barrett's esophagus: cancer and molecular biology.Ann N Y Acad Sci. 2013 Oct;1300:296-314. doi: 10.1111/nyas.12252.
60 High expression of Claudin-2 in esophageal carcinoma and precancerous lesions is significantly associated with the bile salt receptors VDR and TGR5.BMC Gastroenterol. 2017 Feb 17;17(1):33. doi: 10.1186/s12876-017-0590-0.
61 Expression, regulation and targeting of receptor tyrosine kinases in esophageal squamous cell carcinoma.Mol Cancer. 2018 Feb 19;17(1):54. doi: 10.1186/s12943-018-0790-4.
62 Targeting the COX1/2-Driven thromboxane A2 pathway suppresses Barrett's esophagus and esophageal adenocarcinoma development.EBioMedicine. 2019 Nov;49:145-156. doi: 10.1016/j.ebiom.2019.10.038. Epub 2019 Nov 7.
63 Protein coding gene CRNKL1 as a potential prognostic biomarker in esophageal adenocarcinoma.Artif Intell Med. 2017 Feb;76:1-6. doi: 10.1016/j.artmed.2017.01.002. Epub 2017 Jan 22.
64 Changes in mitochondrial stability during the progression of the Barrett's esophagus disease sequence.BMC Cancer. 2016 Jul 19;16:497. doi: 10.1186/s12885-016-2544-2.
65 Cap-dependent mRNA translation and the ubiquitin-proteasome system cooperate to promote ERBB2-dependent esophageal cancer phenotype.Cancer Gene Ther. 2012 Sep;19(9):609-18. doi: 10.1038/cgt.2012.39. Epub 2012 Jul 6.
66 EMX2 is epigenetically silenced and suppresses epithelialmesenchymal transition in human esophageal adenocarcinoma.Oncol Rep. 2019 Nov;42(5):2169-2178. doi: 10.3892/or.2019.7284. Epub 2019 Aug 20.
67 In-depth characterization of the Wnt-signaling/-catenin pathway in an in vitro model of Barrett's sequence.BMC Gastroenterol. 2019 Mar 6;19(1):38. doi: 10.1186/s12876-019-0957-5.
68 A pooled analysis of the ERCC2 Asp312Asn polymorphism and esophageal cancer susceptibility.Tumour Biol. 2014 Apr;35(4):2959-65. doi: 10.1007/s13277-013-1380-0.
69 Prognostic impact of FOXF1 polymorphisms in gastric cancer patients.Pharmacogenomics J. 2018 Apr;18(2):262-269. doi: 10.1038/tpj.2017.9. Epub 2017 Apr 11.
70 Aberrant methylation of secreted frizzled-related protein genes in esophageal adenocarcinoma and Barrett's esophagus.Int J Cancer. 2005 Sep 10;116(4):584-91. doi: 10.1002/ijc.21045.
71 The Barrett-associated variants at GDF7 and TBX5 also increase esophageal adenocarcinoma risk.Cancer Med. 2016 May;5(5):888-91. doi: 10.1002/cam4.641. Epub 2016 Jan 18.
72 Golgi phosphoprotein 2 (GOLPH2) is a novel bile acid-responsive modulator of oesophageal cell migration and invasion.Br J Cancer. 2015 Nov 3;113(9):1332-42. doi: 10.1038/bjc.2015.350. Epub 2015 Oct 13.
73 Glutathione peroxidase 7 protects against oxidative DNA damage in oesophageal cells.Gut. 2012 Sep;61(9):1250-60. doi: 10.1136/gutjnl-2011-301078. Epub 2011 Dec 9.
74 Inflammation and Barrett's carcinogenesis.Pathol Res Pract. 2012 May 15;208(5):269-80. doi: 10.1016/j.prp.2012.03.007. Epub 2012 Apr 27.
75 Krppel-Like Factor 12 Promotes Colorectal Cancer Growth through Early Growth Response Protein 1.PLoS One. 2016 Jul 21;11(7):e0159899. doi: 10.1371/journal.pone.0159899. eCollection 2016.
76 Deregulation of the FOXM1 target gene network and its coregulatory partners in oesophageal adenocarcinoma.Mol Cancer. 2015 Mar 26;14:69. doi: 10.1186/s12943-015-0339-8.
77 Neoadjuvant radiochemotherapy in adenocarcinoma of the esophagus: ERCC1 gene polymorphisms for prediction of response and prognosis.J Gastrointest Surg. 2012 Jan;16(1):26-34; discussion 34. doi: 10.1007/s11605-011-1700-x. Epub 2011 Sep 29.
78 Pharmacological targeting of p38 MAP-Kinase 6 (MAP2K6) inhibits the growth of esophageal adenocarcinoma.Cell Signal. 2018 Nov;51:222-232. doi: 10.1016/j.cellsig.2018.08.008. Epub 2018 Aug 11.
79 Diagnostic correlation between the expression of the DNA repair enzyme N-methylpurine DNA glycosylase and esophageal adenocarcinoma onset: a retrospective pilot study.Dis Esophagus. 2013 Aug;26(6):644-50. doi: 10.1111/dote.12003. Epub 2012 Nov 8.
80 Germline variant in MSX1 identified in a Dutch family with clustering of Barrett's esophagus and esophageal adenocarcinoma.Fam Cancer. 2018 Jul;17(3):435-440. doi: 10.1007/s10689-017-0054-2.
81 Accurate discrimination of Barrett's esophagus and esophageal adenocarcinoma using a quantitative three-tiered algorithm and multimarker real-time reverse transcription-PCR.Clin Cancer Res. 2005 Mar 15;11(6):2205-14. doi: 10.1158/1078-0432.CCR-04-1091.
82 Translational study identifies XPF and MUS81 as predictive biomarkers for oxaliplatin-based peri-operative chemotherapy in patients with esophageal adenocarcinoma.Sci Rep. 2018 May 8;8(1):7265. doi: 10.1038/s41598-018-24232-2.
83 Myo9B is associated with an increased risk of Barrett's esophagus and esophageal adenocarcinoma.Scand J Gastroenterol. 2012 Dec;47(12):1422-8. doi: 10.3109/00365521.2012.722673. Epub 2012 Sep 7.
84 NIR absorbing reduced graphene oxide for photothermal radiotherapy for treatment of esophageal cancer.J Photochem Photobiol B. 2019 May;194:188-193. doi: 10.1016/j.jphotobiol.2019.03.014. Epub 2019 Mar 22.
85 Rho Kinase ROCK2 Mediates Acid-Induced NADPH Oxidase NOX5-S Expression in Human Esophageal Adenocarcinoma Cells.PLoS One. 2016 Feb 22;11(2):e0149735. doi: 10.1371/journal.pone.0149735. eCollection 2016.
86 Developing a blood-based gene mutation assay as a novel biomarker for oesophageal adenocarcinoma.Sci Rep. 2019 Mar 26;9(1):5168. doi: 10.1038/s41598-019-41490-w.
87 Increased CDX2 and decreased PITX1 homeobox gene expression in Barrett's esophagus and Barrett's-associated adenocarcinoma.Surgery. 2005 Nov;138(5):924-31. doi: 10.1016/j.surg.2005.05.007.
88 Aberrantly methylated PKP1 in the progression of Barrett's esophagus to esophageal adenocarcinoma.Genes Chromosomes Cancer. 2012 Apr;51(4):384-93. doi: 10.1002/gcc.21923. Epub 2011 Dec 14.
89 Preliminary evaluation for Bit1 as a potential biomarker for squamous cell carcinoma and adenocarcinoma of esophagus.Tumour Biol. 2017 May;39(5):1010428317708267. doi: 10.1177/1010428317708267.
90 Inhibition of farnesoid X receptor controls esophageal cancer cell growth in vitro and in nude mouse xenografts.Cancer. 2013 Apr 1;119(7):1321-9. doi: 10.1002/cncr.27910. Epub 2012 Dec 20.
91 Reduced RBM3 expression is associated with aggressive tumor features in esophageal cancer but not significantly linked to patient outcome.BMC Cancer. 2018 Nov 12;18(1):1106. doi: 10.1186/s12885-018-5032-z.
92 Radiation sensitivity of esophageal adenocarcinoma: the contribution of the RNA-binding protein RNPC1 and p21-mediated cell cycle arrest to radioresistance.Radiat Res. 2012 Mar;177(3):272-9. doi: 10.1667/rr2776.1. Epub 2012 Jan 3.
93 Interactions Between Genetic Variants and Environmental Factors Affect Risk of Esophageal Adenocarcinoma and Barrett's Esophagus.Clin Gastroenterol Hepatol. 2018 Oct;16(10):1598-1606.e4. doi: 10.1016/j.cgh.2018.03.007. Epub 2018 Mar 15.
94 Integrative genomics identified RFC3 as an amplified candidate oncogene in esophageal adenocarcinoma.Clin Cancer Res. 2012 Apr 1;18(7):1936-46. doi: 10.1158/1078-0432.CCR-11-1431. Epub 2012 Feb 10.
95 Aberrant methylation of the Ras-related associated with diabetes gene in human primary esophageal cancer.Anticancer Res. 2013 Nov;33(11):5199-203.
96 Value of histomorphometric tumour thickness and smoothelin for conventional m-classification in early oesophageal adenocarcinoma.World J Gastrointest Oncol. 2017 Nov 15;9(11):444-451. doi: 10.4251/wjgo.v9.i11.444.
97 Authentication and characterisation of a new oesophageal adenocarcinoma cell line: MFD-1.Sci Rep. 2016 Sep 7;6:32417. doi: 10.1038/srep32417.
98 RING finger proteins are involved in the progression of barrett esophagus to esophageal adenocarcinoma: a preliminary study.Gut Liver. 2014 Sep;8(5):487-94. doi: 10.5009/gnl13133. Epub 2014 Feb 24.
99 The RNA editing enzyme APOBEC1 induces somatic mutations and a compatible mutational signature is present in esophageal adenocarcinomas.Genome Biol. 2014 Jul 31;15(7):417. doi: 10.1186/s13059-014-0417-z.
100 Hypermethylation of the GATA gene family in esophageal cancer.Int J Cancer. 2006 Nov 1;119(9):2078-83. doi: 10.1002/ijc.22092.
101 Molecular and clinical differences between adenocarcinomas of the esophagus and of the gastric cardia.Am J Pathol. 2001 Jan;158(1):33-40. doi: 10.1016/S0002-9440(10)63941-7.