General Information of Drug Off-Target (DOT) (ID: OTXP7MXN)

DOT Name Mitochondrial import inner membrane translocase subunit TIM44 (TIMM44)
Gene Name TIMM44
Related Disease
Breast cancer ( )
Breast carcinoma ( )
Colorectal carcinoma ( )
Diabetic kidney disease ( )
Diabetic retinopathy ( )
Non-insulin dependent diabetes ( )
Obesity ( )
Thyroid gland carcinoma ( )
Type-1/2 diabetes ( )
Neoplasm ( )
Thyroid cancer ( )
UniProt ID
TIM44_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2CW9
Pfam ID
PF04280
Sequence
MAAAALRSGWCRCPRRCLGSGIQFLSSHNLPHGSTYQMRRPGGELPLSKSYSSGNRKGFL
SGLLDNVKQELAKNKEMKESIKKFRDEARRLEESDVLQEARRKYKTIESETVRTSEVLRK
KLGELTGTVKESLHEVSKSDLGRKIKEGVEEAAKTAKQSAESVSKGGEKLGRTAAFRALS
QGVESVKKEIDDSVLGQTGPYRRPQRLRKRTEFAGDKFKEEKVFEPNEEALGVVLHKDSK
WYQQWKDFKENNVVFNRFFEMKMKYDESDNAFIRASRALTDKVTDLLGGLFSKTEMSEVL
TEILRVDPAFDKDRFLKQCENDIIPNVLEAMISGELDILKDWCYEATYSQLAHPIQQAKA
LGLQFHSRILDIDNVDLAMGKMMEQGPVLIITFQAQLVMVVRNPKGEVVEGDPDKVLRML
YVWALCRDQDELNPYAAWRLLDISASSTEQIL
Function
Essential component of the PAM complex, a complex required for the translocation of transit peptide-containing proteins from the inner membrane into the mitochondrial matrix in an ATP-dependent manner. Recruits mitochondrial HSP70 to drive protein translocation into the matrix using ATP as an energy source.
Reactome Pathway
Mitochondrial protein import (R-HSA-1268020 )

Molecular Interaction Atlas (MIA) of This DOT

11 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Breast cancer DIS7DPX1 Strong Biomarker [1]
Breast carcinoma DIS2UE88 Strong Biomarker [1]
Colorectal carcinoma DIS5PYL0 Strong Altered Expression [2]
Diabetic kidney disease DISJMWEY Strong Biomarker [3]
Diabetic retinopathy DISHGUJM Strong Biomarker [4]
Non-insulin dependent diabetes DISK1O5Z Strong Biomarker [5]
Obesity DIS47Y1K Strong Biomarker [5]
Thyroid gland carcinoma DISMNGZ0 Strong Genetic Variation [6]
Type-1/2 diabetes DISIUHAP moderate Biomarker [7]
Neoplasm DISZKGEW Limited Biomarker [8]
Thyroid cancer DIS3VLDH Limited Autosomal dominant [9]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Mitochondrial import inner membrane translocase subunit TIM44 (TIMM44). [10]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Mitochondrial import inner membrane translocase subunit TIM44 (TIMM44). [17]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Mitochondrial import inner membrane translocase subunit TIM44 (TIMM44). [19]
------------------------------------------------------------------------------------
12 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Mitochondrial import inner membrane translocase subunit TIM44 (TIMM44). [11]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Mitochondrial import inner membrane translocase subunit TIM44 (TIMM44). [12]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Mitochondrial import inner membrane translocase subunit TIM44 (TIMM44). [13]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Mitochondrial import inner membrane translocase subunit TIM44 (TIMM44). [14]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Mitochondrial import inner membrane translocase subunit TIM44 (TIMM44). [15]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Mitochondrial import inner membrane translocase subunit TIM44 (TIMM44). [16]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Mitochondrial import inner membrane translocase subunit TIM44 (TIMM44). [18]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Mitochondrial import inner membrane translocase subunit TIM44 (TIMM44). [20]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Mitochondrial import inner membrane translocase subunit TIM44 (TIMM44). [21]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN decreases the expression of Mitochondrial import inner membrane translocase subunit TIM44 (TIMM44). [22]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of Mitochondrial import inner membrane translocase subunit TIM44 (TIMM44). [23]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Mitochondrial import inner membrane translocase subunit TIM44 (TIMM44). [24]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Drug(s)

References

1 A new mutation-independent approach to cancer therapy: Inhibiting oncogenic RAS and MYC, by targeting mitochondrial biogenesis.Aging (Albany NY). 2017 Oct 27;9(10):2098-2116. doi: 10.18632/aging.101304.
2 Identification of a fluorescent small-molecule enhancer for therapeutic autophagy in colorectal cancer by targeting mitochondrial protein translocase TIM44.Gut. 2018 Feb;67(2):307-319. doi: 10.1136/gutjnl-2016-311909. Epub 2016 Nov 14.
3 Therapeutic approach for diabetic nephropathy using gene delivery of translocase of inner mitochondrial membrane 44 by reducing mitochondrial superoxide production.J Am Soc Nephrol. 2006 Apr;17(4):1090-101. doi: 10.1681/ASN.2005111148. Epub 2006 Mar 1.
4 Diabetic retinopathy and damage to mitochondrial structure and transport machinery.Invest Ophthalmol Vis Sci. 2011 Nov 7;52(12):8739-46. doi: 10.1167/iovs.11-8045.
5 Translocase of inner mitochondrial membrane 44 alters the mitochondrial fusion and fission dynamics and protects from type 2 diabetes.Metabolism. 2015 Jun;64(6):677-88. doi: 10.1016/j.metabol.2015.02.004. Epub 2015 Feb 23.
6 Novel germline variants identified in the inner mitochondrial membrane transporter TIMM44 and their role in predisposition to oncocytic thyroid carcinomas.Br J Cancer. 2006 Dec 4;95(11):1529-36. doi: 10.1038/sj.bjc.6603455. Epub 2006 Oct 31.
7 Gene delivery of Tim44 reduces mitochondrial superoxide production and ameliorates neointimal proliferation of injured carotid artery in diabetic rats.Diabetes. 2005 Oct;54(10):2882-90. doi: 10.2337/diabetes.54.10.2882.
8 Read-through transcripts in normal human lung parenchyma are down-regulated in lung adenocarcinoma.Oncotarget. 2016 May 10;7(19):27889-98. doi: 10.18632/oncotarget.8556.
9 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
10 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
11 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
12 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
13 Increased mitochondrial ROS formation by acetaminophen in human hepatic cells is associated with gene expression changes suggesting disruption of the mitochondrial electron transport chain. Toxicol Lett. 2015 Apr 16;234(2):139-50.
14 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
15 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
16 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
17 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
18 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
19 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
20 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
21 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
22 The genome-wide expression profile of Scrophularia ningpoensis-treated thapsigargin-stimulated U-87MG cells. Neurotoxicology. 2009 May;30(3):368-76.
23 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134. doi: 10.1016/j.envres.2019.03.035. Epub 2019 Mar 18.
24 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.