General Information of Disease (ID: DISHGUJM)

Disease Name Diabetic retinopathy
Synonyms retinal abnormality - diabetes-related
Disease Class 9B71: Retinopathy
Definition
A chronic, pathological complication associated with diabetes mellitus, where retinal damages are incurred due to microaneurysms in the vasculature of the retina, progressively leading to abnormal blood vessel growth, and swelling and leaking of fluid from blood vessels, resulting in vision loss or blindness.
Disease Hierarchy
DISB4B0F: Retinopathy
DISNEEBJ: Retinal vascular disorder
DIS71G5H: Metabolic disorder
DISHGUJM: Diabetic retinopathy
ICD Code
ICD-11
ICD-11: 9B71.0
ICD-10
ICD-10: H36.0
Disease Identifiers
MONDO ID
MONDO_0005266
MESH ID
D003930
UMLS CUI
C0011884
MedGen ID
3786
SNOMED CT ID
4855003

Drug-Interaction Atlas (DIA) of This Disease

Drug-Interaction Atlas (DIA)
This Disease is Treated as An Indication in 4 Approved Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
Anacaulase DM1L7SH Approved NA [1]
Calcium dobesilate DM0OGAO Approved Small molecular drug [2]
Octreotide DMHIDCJ Approved Small molecular drug [3]
Ranibizumab DMSYPNW Approved Antibody [4]
------------------------------------------------------------------------------------
This Disease is Treated as An Indication in 11 Clinical Trial Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
Vitreosolve DMXL6K3 Phase 3 NA [5]
MC-1101 DMYIIDP Phase 2/3 NA [6]
APX3330 DMU6NBO Phase 2 Small molecular drug [7]
BI 764524 DM9DFBU Phase 2 Antibody [8]
BI 765128 DMFURZ6 Phase 2 Small molecule [9]
I-vation DM0OYLQ Phase 2 NA [10]
Vicasinabin DMF16CU Phase 2 Small molecule [11]
Aminoguanidine DMJQDUC Phase 1 Small molecular drug [12]
ICo-007 DM79W8K Phase 1 Antisense drug [13]
PAN-90806 DMY9LG1 Phase 1 NA [14]
THR-687 DMHRY8A Phase 1 Small molecular drug [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)
This Disease is Treated as An Indication in 2 Discontinued Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
BI 1467335 DMTE3UV Discontinued in Phase 2 Small molecular drug [16]
RG-8803 DMI0CYV Terminated NA [18]
------------------------------------------------------------------------------------
This Disease is Treated as An Indication in 1 Preclinical Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
SR-1001 DM8MYKL Preclinical NA [17]
------------------------------------------------------------------------------------
This Disease is Treated as An Indication in 7 Investigative Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
EC-301 DMCNK6V Investigative NA [19]
EG-Mirotin DM428LM Investigative NA [19]
EPO-derived peptide DMHQDLX Investigative NA [20]
LPO-1010DR DM7LRL0 Investigative NA [19]
PHA-666859 DMHQ6KT Investigative NA [21]
Sac-0601 DMWPJH6 Investigative NA [19]
VEGF/rGel DMWUD8Y Investigative NA [19]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 Drug(s)

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 110 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
AGTR1 TT8DBY3 Limited Biomarker [22]
CCL2 TTNAY0P Limited Altered Expression [23]
CRP TTWRN6M Limited Genetic Variation [24]
FGF21 TTQ916P Limited Altered Expression [25]
GAD2 TT7UY6K Limited Biomarker [26]
HIF1A TTSN6QU Limited Altered Expression [27]
MAN2A1 TT34DCN Limited Genetic Variation [28]
NFE2L2 TTA6ZN2 Limited Altered Expression [29]
PGF TT48I1Y Limited Altered Expression [30]
SOD1 TTP9K3Q Limited Therapeutic [31]
TXNIP TTTLDZK Limited Biomarker [32]
UCHL3 TT23UD6 Limited Genetic Variation [33]
UCP2 TTSC2YM Limited Genetic Variation [34]
ANGPT2 TTKLQTJ moderate Biomarker [35]
CFB TTA0P7K moderate Genetic Variation [36]
GCK TTDLNGZ moderate Genetic Variation [37]
KDR TTUTJGQ moderate Biomarker [38]
RAPGEF3 TTOE7I0 moderate Biomarker [39]
RS1 TTT2CZY moderate Biomarker [40]
ADRB3 TTMXGCW Strong Genetic Variation [41]
AGT TT5C0UB Strong Genetic Variation [42]
AIF1 TT12MEP Strong Biomarker [43]
ALOX15 TTN9T81 Strong Biomarker [44]
ANGPTL3 TT59GO7 Strong Biomarker [45]
ANGPTL4 TTWALY5 Strong Altered Expression [27]
BDKRB1 TTG5QIA Strong Biomarker [46]
BDKRB2 TTGY8IW Strong Biomarker [46]
BDNF TTSMLOH Strong Biomarker [47]
CA1 TTHQPL7 Strong Biomarker [48]
CCN2 TTIL516 Strong Biomarker [49]
CD59 TTBGTEJ Strong Biomarker [50]
CDH5 TTXLCFO Strong Altered Expression [51]
CHN2 TT39YVO Strong Genetic Variation [52]
CTSD TTPT2QI Strong Altered Expression [53]
CTSH TT3G406 Strong Genetic Variation [54]
CYBB TT5T8MR Strong Biomarker [55]
EHMT1 TTOFXD7 Strong Biomarker [56]
EP300 TTGH73N Strong Biomarker [57]
FGF2 TTGKIED Strong Biomarker [58]
FLT1 TT1VAUK Strong Biomarker [59]
GAPDH TTUGSWA Strong Biomarker [60]
GIP TT40HS5 Strong Biomarker [61]
GP6 TTTJUVZ Strong Biomarker [62]
GRB2 TTEYRJ9 Strong Biomarker [63]
HCAR2 TTWNV8U Strong Biomarker [64]
IGF1R TTQFBMY Strong ModifyingMutation [65]
IL17D TTC5LTG Strong Biomarker [66]
INS TTZOPHG Strong Biomarker [67]
ITGA2 TTSJ542 Strong Biomarker [68]
ITGA4 TTJMF9P Strong Therapeutic [69]
KCNJ10 TTG140O Strong Therapeutic [70]
KCNJ11 TT329V4 Strong Altered Expression [71]
KDM1A TTNR0UQ Strong Biomarker [72]
KEAP1 TT3Z6Y9 Strong Biomarker [73]
KLKB1 TTN0PCX Strong Altered Expression [74]
KNG1 TTDJ4MY Strong Biomarker [75]
LGALS1 TTO3NYT Strong Biomarker [76]
LILRB1 TTC0QRJ Strong Biomarker [77]
LIPG TTHSZXO Strong Genetic Variation [78]
LOX TTQHNAM Strong Altered Expression [79]
LRP6 TTSXOWE Strong Biomarker [80]
NOS1 TTZUFI5 Strong Biomarker [81]
NOX4 TTQRBSJ Strong Altered Expression [82]
NPR3 TTWVLS6 Strong Biomarker [83]
NTN1 TT0AH4L Strong Biomarker [84]
P2RX7 TT473XN Strong Biomarker [85]
PABPC1 TTHC8EF Strong Biomarker [86]
PCSK2 TT46F0P Strong Genetic Variation [87]
PLA2G7 TTDNFMT Strong Biomarker [88]
PLXDC1 TTPSK7A Strong Biomarker [89]
PON1 TT9LX82 Strong Biomarker [90]
PRKCZ TTBSN0L Strong Biomarker [91]
RENBP TTZCG0Q Strong Altered Expression [58]
RPGR TTHBDA9 Strong Biomarker [92]
SCG3 TTY5R9H Strong Biomarker [93]
SIRT1 TTUF2HO Strong Altered Expression [94]
SIRT5 TTH0IOD Strong Biomarker [95]
SIRT6 TTUXYWF Strong Biomarker [96]
SLC5A2 TTF8JAT Strong Genetic Variation [97]
SMPD1 TTJTM88 Strong Biomarker [98]
SP1 TTZEP6S Strong Altered Expression [99]
SRGN TTCHB06 Strong Biomarker [61]
SRR TTZFUY6 Strong Biomarker [100]
ST8SIA4 TTDP8YM Strong Genetic Variation [101]
STK38 TT27XFN Strong Biomarker [102]
SUCNR1 TT4FX9Y Strong Biomarker [103]
TEK TT9VGXW Strong Biomarker [104]
THBS1 TTKI0H1 Strong Biomarker [105]
TNFSF15 TTEST6I Strong Biomarker [106]
TRPC1 TTA76X0 Strong Biomarker [107]
TTR TTPOYU7 Strong Biomarker [108]
TXN TTZJ5U9 Strong Biomarker [32]
UCP1 TTI12YJ Strong Genetic Variation [109]
VEGFC TT0QUFV Strong Genetic Variation [110]
AOC3 TT7HC21 Definitive Biomarker [111]
CARM1 TTIZQFJ Definitive Altered Expression [112]
CNTF TTGEM5Q Definitive Biomarker [113]
CTSF TTJOKD1 Definitive Altered Expression [114]
GFAP TTI6FFX Definitive Biomarker [43]
GRIK2 TT0K5RG Definitive Biomarker [115]
ID2 TTW8A5N Definitive Biomarker [116]
IDE TT2EDHU Definitive Genetic Variation [117]
KIF11 TTBGTCW Definitive Genetic Variation [117]
RBP4 TT0C8BY Definitive Biomarker [118]
RTN4R TTVRZUO Definitive Biomarker [113]
RXRG TTH029C Definitive Genetic Variation [119]
SIGMAR1 TT5TPI6 Definitive Biomarker [120]
SLC19A3 TT9BTWM Definitive Genetic Variation [121]
TCF7L2 TT80QAL Definitive Genetic Variation [109]
VCAM1 TTHCEF6 Definitive Altered Expression [122]
------------------------------------------------------------------------------------
⏷ Show the Full List of 110 DTT(s)
This Disease Is Related to 1 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
SLC50A1 DTI9CQU Strong Biomarker [123]
------------------------------------------------------------------------------------
This Disease Is Related to 5 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
AKR1A1 DED2FW3 Limited Genetic Variation [124]
SMOX DEOH5V3 Strong Biomarker [125]
RDH5 DESI4OK Definitive Biomarker [126]
UPP1 DEFZWAX Definitive Biomarker [127]
UPRT DE20ETR Definitive Biomarker [127]
------------------------------------------------------------------------------------
This Disease Is Related to 114 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
CTNNBL1 OT6KLHPA Limited Biomarker [128]
DECR1 OTCDIR6X Limited Biomarker [129]
ENOX1 OT4WOLA8 Limited Biomarker [130]
GHRH OT94U6MO Limited Biomarker [131]
KIAA0825 OTANX32T Limited Genetic Variation [132]
LMO7 OTDLY6TC Limited Genetic Variation [33]
RBFOX1 OTFPKEL7 Limited Genetic Variation [133]
TBC1D4 OTK66C40 Limited Genetic Variation [33]
ADCY10 OTYSTB0R moderate Biomarker [64]
FBRS OTUVH446 moderate Biomarker [134]
FBXO8 OTZNGJGW moderate Biomarker [134]
MAGEC3 OT0KDWZN moderate Biomarker [64]
MYO5C OTKLOCWZ moderate Genetic Variation [135]
RGCC OTYJMLWM moderate Altered Expression [136]
SIRT4 OT5S0J23 moderate Altered Expression [134]
ACVR1C OTOTYERF Strong Biomarker [137]
ADA2 OTGCV24S Strong Biomarker [138]
ADNP OTEGICWR Strong Biomarker [139]
AFF3 OTR0705Z Strong Biomarker [63]
ANGPTL8 OTQFINCD Strong Altered Expression [140]
AQP4 OTA9MYD5 Strong Biomarker [141]
ARHGAP22 OTXUQEFL Strong Altered Expression [142]
ARPP21 OTWXZN5I Strong Biomarker [107]
ATP6AP2 OT0IABVV Strong Biomarker [143]
ATP6V0A2 OTJBDX0Y Strong Genetic Variation [144]
C1QTNF3 OTOJMWW0 Strong Biomarker [145]
C1QTNF9 OTLI3VA3 Strong Biomarker [146]
CAPN10 OTS9LJW4 Strong Biomarker [147]
CCL15 OTOGZ85M Strong Biomarker [148]
CCL8 OTCTWYN8 Strong Biomarker [149]
CLDN1 OT27KV99 Strong Altered Expression [150]
CLDN19 OTVD6IBL Strong Altered Expression [150]
CLDN7 OTNE0XHQ Strong Altered Expression [150]
CNKSR3 OTXP4QH8 Strong Biomarker [63]
CORT OTX3GUHB Strong Altered Expression [151]
CRX OTH435SV Strong Biomarker [92]
CYBA OT16N9ZO Strong Biomarker [152]
EMCN OTS03CZC Strong Biomarker [153]
ENHO OT91QASK Strong Biomarker [154]
FAM20C OTW5YZ7X Strong Biomarker [107]
FGF16 OT6BHWZP Strong Biomarker [155]
FUCA1 OTW71IK4 Strong Biomarker [156]
GFER OTVK43OK Strong Genetic Variation [124]
GH2 OT32TR4C Strong Biomarker [157]
GNAT1 OTK2SNJA Strong Biomarker [158]
GOLGA6A OTHU9MRX Strong Biomarker [56]
H1-2 OT0AVI4M Strong Altered Expression [159]
HEMGN OTZPYUOY Strong Biomarker [102]
HES5 OTW7JEHV Strong Biomarker [160]
HOXB3 OT9UC5PE Strong Biomarker [77]
IL27 OTIS3OF8 Strong Biomarker [66]
ING4 OT0VVG4V Strong Biomarker [161]
INTU OTXB13E6 Strong Altered Expression [162]
KMT2D OTTVHCLY Strong Genetic Variation [124]
LCN1 OT8BWXTV Strong Biomarker [163]
MALRD1 OTCAAPVO Strong Genetic Variation [87]
MAP1LC3B OTUYHB84 Strong Altered Expression [164]
MCTP2 OTFMZ8I2 Strong Biomarker [63]
MFN2 OTPYN8A3 Strong Biomarker [165]
MOK OTQK7M9V Strong Genetic Variation [166]
MYDGF OT9HRPL6 Strong Biomarker [66]
NME2 OTCYGLHV Strong Biomarker [35]
NOVA1 OT6A9KHY Strong Altered Expression [167]
NUTF2 OT8VA2ZF Strong Therapeutic [168]
NVL OTWTGVTI Strong Biomarker [28]
OCLN OTSUTVWL Strong Altered Expression [169]
OGT OT1Z1ZXE Strong Altered Expression [170]
OPN4 OT1LZ7TS Strong Biomarker [171]
PHLDA2 OTMV9DPP Strong Biomarker [172]
PLVAP OTAQGWYA Strong Altered Expression [173]
PLXNA2 OTNNBJMQ Strong Genetic Variation [174]
PNPLA2 OTR3ERMR Strong Altered Expression [175]
POU2F3 OTIOOJWD Strong Biomarker [68]
PRDM16 OT0BGA27 Strong Biomarker [160]
RBPMS OT1RDKR9 Strong Biomarker [176]
RCBTB1 OTAYELI8 Strong Biomarker [56]
RMC1 OT7K8MTJ Strong Biomarker [177]
RPE OT0XT3JU Strong Biomarker [178]
SCAF8 OTSCFMK3 Strong Genetic Variation [179]
SCUBE1 OT4JY1UY Strong Altered Expression [180]
SDHB OTRE1M1T Strong Genetic Variation [181]
SERPINA3 OT9BP2S0 Strong Biomarker [182]
STAP2 OTEB1VVI Strong Biomarker [183]
TAS1R3 OTOVM44D Strong Biomarker [184]
TIMM44 OTXP7MXN Strong Biomarker [185]
TLE1 OT50MRZ1 Strong Biomarker [186]
API5 OTYX9YCZ Definitive Biomarker [187]
ARF6 OTVV7KJO Definitive Biomarker [188]
ARMC9 OT0MZER2 Definitive Genetic Variation [189]
ARMS2 OTUXHJ9H Definitive Biomarker [190]
B4GALT2 OTYIQT2F Definitive Biomarker [191]
CASP14 OTKY93H9 Definitive Altered Expression [192]
CCNL1 OTAJSS3D Definitive Biomarker [193]
CDKAL1 OTA0SGNE Definitive Genetic Variation [117]
CNBP OTTGM9NK Definitive Biomarker [194]
COLEC12 OTIQTK9G Definitive Genetic Variation [187]
CPVL OTOJL31C Definitive Genetic Variation [195]
GORAB OTP65YD7 Definitive Biomarker [187]
HHEX OTLIUVYX Definitive Genetic Variation [117]
IGSF21 OTUFCXBS Definitive Biomarker [193]
KLHDC7A OTZAAF38 Definitive Biomarker [193]
LEKR1 OTERQO47 Definitive Biomarker [193]
MAPK13 OT0W9GE7 Definitive Biomarker [126]
MRPL14 OTFKEKLJ Definitive Biomarker [115]
NID1 OTKLBLS6 Definitive Biomarker [196]
NOX3 OT0FFJH8 Definitive Altered Expression [197]
OR10A4 OTYYB8SY Definitive Genetic Variation [198]
RBP3 OTIWM4GT Definitive Altered Expression [199]
ROMO1 OTIEYVBW Definitive Genetic Variation [200]
SLMAP OTHW3DVC Definitive Biomarker [201]
SUMO4 OT9B447E Definitive Genetic Variation [202]
TMEM217 OTD7DG7V Definitive Biomarker [115]
TMEM63B OTQNB4KI Definitive Biomarker [115]
TSC22D1 OTN4GFWD Definitive Biomarker [203]
------------------------------------------------------------------------------------
⏷ Show the Full List of 114 DOT(s)

References

1 Trusted, scientifically sound profiles of drug programs, clinical trials, safety reports, and company deals, written by scientists. Springer. 2015. Adis Insight (drug id 800019356)
2 Drugs@FDA. U.S. Food and Drug Administration. U.S. Department of Health & Human Services. 2015
3 Octreotide FDA Label
4 Five-Year Outcomes of Panretinal Photocoagulation vs Intravitreous Ranibizumab for Proliferative Diabetic Retinopathy: A Randomized Clinical Trial. JAMA Ophthalmol. 2018 Oct 1;136(10):1138-1148.
5 ClinicalTrials.gov (NCT00908778) A Safety and Efficacy Study of Vitreosolve for Non-Proliferative Diabetic Retinopathy Subjects. U.S. National Institutes of Health.
6 ClinicalTrials.gov (NCT02127463) Phase II/III Study of the Efficacy and Safety of MacuCLEAR MC-1101 in Treating DryAge-Related Macular Degeneration. U.S. National Institutes of Health.
7 ClinicalTrials.gov (NCT04692688) Study of the Safety and Efficacy of APX3330 in Diabetic Retinopathy (ZETA-1). U.S. National Institutes of Health.
8 ClinicalTrials.gov (NCT04424290) A First-in Human Trial to Study Safety and Tolerability of Single Rising Intravitreal dOses (Open Label, Non-randomized, Uncontrolled) and in Addition the Early Biological Response of Multiple intravitReal Dosing (Single-masked, raNdomized, Sham-controlled) of BI 764524 in panretinaL Photocoagulation (PRP) Treated proLiferative Diabetic Retinopathy (PDR) Patients With Diabetic Macular Ischemia (DMI) - the HORNBILL Study. U.S.National Institutes of Health.
9 ClinicalTrials.gov (NCT04919499) A First in Human Trial to Study Safety and Tolerability of Single Rising Intravitreal Doses (oPen Label, Non-randomized, Uncontrolled) and in Addition the Early Biological Response of mulTiple Intravitreal Doses (Double-masked, RandomIzed, Sham-controlleD) of BI 765128 in Panretinal photocoaGulation (PRP) Treated Diabetic rEtinopathy (DR) Patients With Diabetic Macular Ischemia (DMI) - the PARTRIDGE Study. U.S.National Institutes of Health.
10 Drug delivery implants in the treatment of vitreous inflammation. Mediators Inflamm. 2013;2013:780634.
11 Clinical pipeline report, company report or official report of Roche
12 ClinicalTrials.gov (NCT02099981) Restoration of Retinal Vascular Responses in Type 1 Diabetic Patients in University of Minnesota - Clinical and Translational Science Institute.
13 Clinical pipeline report, company report or official report of ISIS Pharmaceuticals (2011).
14 Clinical pipeline report, company report or official report of the Pharmaceutical Research and Manufacturers of America (PhRMA)
15 ClinicalTrials.gov (NCT03666923) A Study to Evaluate the Safety of THR-687 in Subjects With Diabetic Macular Edema (DME). U.S. National Institutes of Health.
16 Clinical pipeline report, company report or official report of Boehringer Ingelheim.
17 RORt Inhibitor-SR1001 Halts Retinal Inflammation, Capillary Degeneration, and the Progression of Diabetic Retinopathy. Int J Mol Sci. 2020 May 17;21(10):3547.
18 Trusted, scientifically sound profiles of drug programs, clinical trials, safety reports, and company deals, written by scientists. Springer. 2015. Adis Insight (drug id 800011158)
19 The ChEMBL database in 2017. Nucleic Acids Res. 2017 Jan 4;45(D1):D945-D954.
20 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Target id: 1718).
21 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Target id: 1499).
22 Role of the angiotensin II type 1 receptor in the pathogenesis of diabetic retinopathy: effects of blood pressure control and beyond.J Hypertens Suppl. 2006 Mar;24(1):S73-80. doi: 10.1097/01.hjh.0000220410.69116.f8.
23 Monocyte chemoattractant protein-1 (MCP-1/CCL2) in diabetic retinopathy: latest evidence and clinical considerations.J Cell Commun Signal. 2019 Dec;13(4):451-462. doi: 10.1007/s12079-018-00500-8. Epub 2019 Jan 3.
24 C-reactive protein genetic variant is associated with diabetic retinopathy in Chinese patients with type 2 diabetes.BMC Endocr Disord. 2015 Mar 2;15:8. doi: 10.1186/s12902-015-0006-5.
25 The U-shaped relationship between fibroblast growth factor 21 and microvascular complication in type 2 diabetes mellitus.J Diabetes Complications. 2017 Jan;31(1):134-140. doi: 10.1016/j.jdiacomp.2016.10.017. Epub 2016 Oct 19.
26 HLA genes, islet autoantibodies and residual C-peptide at the clinical onset of type 1 diabetes mellitus and the risk of retinopathy 15 years later.PLoS One. 2011 Mar 11;6(3):e17569. doi: 10.1371/journal.pone.0017569.
27 Angiopoietin-Like Protein 4 (ANGPTL4) Induces Retinal Pigment Epithelial Barrier Breakdown by Activating Signal Transducer and Activator of Transcription 3 (STAT3): Evidence from ARPE-19 Cells Under Hypoxic Condition and Diabetic Rats.Med Sci Monit. 2019 Sep 8;25:6742-6754. doi: 10.12659/MSM.915748.
28 Multiethnic Genome-Wide Association Study of Diabetic Retinopathy Using Liability Threshold Modeling of Duration of Diabetes and Glycemic Control.Diabetes. 2019 Feb;68(2):441-456. doi: 10.2337/db18-0567. Epub 2018 Nov 28.
29 Curcumin prevents high glucose damage in retinal pigment epithelial cells through ERK1/2-mediated activation of the Nrf2/HO-1 pathway.J Cell Physiol. 2019 Aug;234(10):17295-17304. doi: 10.1002/jcp.28347. Epub 2019 Feb 15.
30 The role of placental growth factor (PlGF) and its receptor system in retinal vascular diseases.Prog Retin Eye Res. 2019 Mar;69:116-136. doi: 10.1016/j.preteyeres.2018.10.006. Epub 2018 Oct 30.
31 Retinal ion regulation in a mouse model of diabetic retinopathy: natural history and the effect of Cu/Zn superoxide dismutase overexpression.Invest Ophthalmol Vis Sci. 2009 May;50(5):2351-8. doi: 10.1167/iovs.08-2918. Epub 2008 Dec 13.
32 Verapamil Attenuated Prediabetic Neuropathy in High-Fat Diet-Fed Mice through Inhibiting TXNIP-Mediated Apoptosis and Inflammation.Oxid Med Cell Longev. 2019 Jan 10;2019:1896041. doi: 10.1155/2019/1896041. eCollection 2019.
33 Genome-wide association study in a Chinese population with diabetic retinopathy.Hum Mol Genet. 2013 Aug 1;22(15):3165-73. doi: 10.1093/hmg/ddt161. Epub 2013 Apr 4.
34 The A allele of the UCP2 -866G/A polymorphism changes UCP2 promoter activity in HUVECs treated with high glucose.Mol Biol Rep. 2019 Oct;46(5):4735-4741. doi: 10.1007/s11033-019-04918-0. Epub 2019 Jun 19.
35 O-GlcNAcylation of FoxO1 mediates nucleoside diphosphate kinase B deficiency induced endothelial damage.Sci Rep. 2018 Jul 12;8(1):10581. doi: 10.1038/s41598-018-28892-y.
36 Association of CFH and CFB gene polymorphisms with retinopathy in type 2 diabetic patients.Mediators Inflamm. 2013;2013:748435. doi: 10.1155/2013/748435. Epub 2013 Jun 24.
37 Prevalence of Retinopathy in Adult Patients with GCK-MODY and HNF1A-MODY.Exp Clin Endocrinol Diabetes. 2015 Oct;123(9):524-8. doi: 10.1055/s-0035-1559605. Epub 2015 Aug 4.
38 The NLRP3 Inflammasome May Contribute to Pathologic Neovascularization in the Advanced Stages of Diabetic Retinopathy.Sci Rep. 2018 Feb 12;8(1):2847. doi: 10.1038/s41598-018-21198-z.
39 The microRNA-7-mediated reduction in EPAC-1 contributes to vascular endothelial permeability and eNOS uncoupling in murine experimental retinopathy.Acta Diabetol. 2017 Jun;54(6):581-591. doi: 10.1007/s00592-017-0985-y. Epub 2017 Mar 28.
40 Retina-specific mRNA in the assessment of diabetic retinopathy.Ann N Y Acad Sci. 2008 Aug;1137:253-7. doi: 10.1196/annals.1448.008.
41 Beta 3-adrenoreceptor gene polymorphism: a newly identified risk factor for proliferative retinopathy in NIDDM patients.Diabetes. 1997 Oct;46(10):1633-6. doi: 10.2337/diacare.46.10.1633.
42 Interaction of renin-angiotensin system gene polymorphisms with hypertension in Chinese patients with type 1 diabetes and retinopathy.Oncotarget. 2018 Jan 9;9(7):7582-7589. doi: 10.18632/oncotarget.24100. eCollection 2018 Jan 26.
43 Connexin Hemichannel Block Using Orally Delivered Tonabersat Improves Outcomes in Animal Models of Retinal Disease.Neurotherapeutics. 2020 Jan;17(1):371-387. doi: 10.1007/s13311-019-00786-5.
44 Role of endoplasmic reticulum stress in 12/15-lipoxygenase-induced retinal microvascular dysfunction in a mouse model of diabetic retinopathy.Diabetologia. 2018 May;61(5):1220-1232. doi: 10.1007/s00125-018-4560-z. Epub 2018 Feb 21.
45 Angiopoietin-like 3 Is a Potential Biomarker for Retinopathy in Type 2 Diabetic Patients.Am J Ophthalmol. 2018 Jul;191:34-41. doi: 10.1016/j.ajo.2018.03.040. Epub 2018 Apr 3.
46 Retinal plasma extravasation in streptozotocin-diabetic rats mediated by kinin B(1) and B(2) receptors.Br J Pharmacol. 2008 May;154(1):136-43. doi: 10.1038/bjp.2008.48. Epub 2008 Mar 3.
47 RELATIONSHIP BETWEEN STAGES OF DIABETIC RETINOPATHY AND LEVELS OF BRAIN-DERIVED NEUROTROPHIC FACTOR IN AQUEOUS HUMOR AND SERUM.Retina. 2020 Jan;40(1):121-125. doi: 10.1097/IAE.0000000000002355.
48 A Review: Proteomics in Retinal Artery Occlusion, Retinal Vein Occlusion, Diabetic Retinopathy and Acquired Macular Disorders.Int J Mol Sci. 2017 Apr 28;18(5):907. doi: 10.3390/ijms18050907.
49 Functionalized aptamer with an antiparallel G-quadruplex: Structural remodeling, recognition mechanism, and diagnostic applications targeting CTGF.Biosens Bioelectron. 2019 Oct 1;142:111475. doi: 10.1016/j.bios.2019.111475. Epub 2019 Jul 2.
50 Adeno-associated virus mediated delivery of a non-membrane targeted human soluble CD59 attenuates some aspects of diabetic retinopathy in mice.PLoS One. 2013 Oct 22;8(10):e79661. doi: 10.1371/journal.pone.0079661. eCollection 2013.
51 LncRNA-MALAT1 promotes neovascularization in diabetic retinopathy through regulating miR-125b/VE-cadherin axis.Biosci Rep. 2019 May 15;39(5):BSR20181469. doi: 10.1042/BSR20181469. Print 2019 May 31.
52 Chimerin 2 genetic polymorphisms are associated with non-proliferative diabetic retinopathy in Taiwanese type 2 diabetic patients.J Diabetes Complications. 2014 Jul-Aug;28(4):460-3. doi: 10.1016/j.jdiacomp.2014.04.009. Epub 2014 Apr 18.
53 Association of increased levels of MCP-1 and cathepsin-D in young onset type 2 diabetes patients (T2DM-Y) with severity of diabetic retinopathy.J Diabetes Complications. 2017 May;31(5):804-809. doi: 10.1016/j.jdiacomp.2017.02.017. Epub 2017 Mar 10.
54 Polymorphisms in the CTSH gene may influence the progression of diabetic retinopathy: a candidate-gene study in the Danish Cohort of Pediatric Diabetes 1987 (DCPD1987).Graefes Arch Clin Exp Ophthalmol. 2015 Nov;253(11):1959-65. doi: 10.1007/s00417-015-3118-8. Epub 2015 Aug 6.
55 Functional Regulation of an Oxidative Stress Mediator, Rac1, in Diabetic Retinopathy.Mol Neurobiol. 2019 Dec;56(12):8643-8655. doi: 10.1007/s12035-019-01696-5. Epub 2019 Jul 13.
56 Glucagon-like Peptide 1 Receptor Agonists, Diabetic Retinopathy and Angiogenesis: The AngioSafe Type 2 Diabetes Study.J Clin Endocrinol Metab. 2020 Apr 1;105(4):dgz069. doi: 10.1210/clinem/dgz069.
57 miR-146a-Mediated extracellular matrix protein production in chronic diabetes complications.Diabetes. 2011 Nov;60(11):2975-84. doi: 10.2337/db11-0478. Epub 2011 Sep 1.
58 Evaluation of vitreous levels of advanced glycation end products and angiogenic factors as biomarkers for severity of diabetic retinopathy.Int Ophthalmol. 2018 Apr;38(2):607-615. doi: 10.1007/s10792-017-0499-1. Epub 2017 Mar 15.
59 Reversible retinal vessel closure from VEGF-induced leukocyte plugging.JCI Insight. 2017 Sep 21;2(18):e95530. doi: 10.1172/jci.insight.95530. eCollection 2017 Sep 21.
60 Assessment of cell-free DNA with microvascular complication of type II diabetes mellitus, using PCR and ELISA.Nucleosides Nucleotides Nucleic Acids. 2010 Mar;29(3):228-36. doi: 10.1080/15257771003708298.
61 Should the last be first? Questions and dilemmas regarding early short-term insulin treatment in Type 2 Diabetes Mellitus.Expert Opin Biol Ther. 2018 Nov;18(11):1113-1121. doi: 10.1080/14712598.2018.1526278. Epub 2018 Sep 25.
62 BglII gene polymorphism of the alpha2beta1 integrin gene is a risk factor for diabetic retinopathy in Caucasians with type 2 diabetes.J Hum Genet. 2003;48(9):457-460. doi: 10.1007/s10038-003-0060-0. Epub 2003 Aug 23.
63 Progress in Defining the Genetic Basis of Diabetic Complications.Curr Diab Rep. 2017 Sep;17(9):80. doi: 10.1007/s11892-017-0906-z.
64 Constitutive expression of HCA(2) in human retina and primary human retinal pigment epithelial cells.Curr Eye Res. 2014 May;39(5):487-92. doi: 10.3109/02713683.2013.848900. Epub 2013 Nov 11.
65 The potential role of IGF-I receptor mRNA in rats with diabetic retinopathy.Chin Med J (Engl). 2003 Mar;116(3):478-80.
66 IL-27 regulates HIF-1-mediated VEGFA response in macrophages of diabetic retinopathy patients and healthy individuals.Cytokine. 2019 Jan;113:238-247. doi: 10.1016/j.cyto.2018.07.011. Epub 2018 Jul 13.
67 Adipose stem cells and their paracrine factors are therapeutic for early retinal complications of diabetes in the Ins2(Akita) mouse.Stem Cell Res Ther. 2018 Nov 21;9(1):322. doi: 10.1186/s13287-018-1059-y.
68 Association of platelet glycoprotein receptor alpha2beta1 integrin and glycoprotein IIIa gene polymorphisms with diabetic retinopathy: evidence from 3007 subjects.Curr Eye Res. 2015 May;40(5):476-83. doi: 10.3109/02713683.2014.932386. Epub 2014 Jun 30.
69 Role of alpha 4 integrin (CD49d) in the pathogenesis of diabetic retinopathy.Invest Ophthalmol Vis Sci. 2009 Oct;50(10):4898-904. doi: 10.1167/iovs.08-2013. Epub 2009 Jun 24.
70 Protection against methylglyoxal-derived AGEs by regulation of glyoxalase 1 prevents retinal neuroglial and vasodegenerative pathology.Diabetologia. 2012 Mar;55(3):845-54. doi: 10.1007/s00125-011-2393-0. Epub 2011 Dec 6.
71 Genome-wide DNA methylation analysis of human peripheral blood reveals susceptibility loci of diabetes-related hearing loss.J Hum Genet. 2018 Dec;63(12):1241-1250. doi: 10.1038/s10038-018-0507-y. Epub 2018 Sep 12.
72 Novel epigenetic-sensitive clinical challenges both in type 1 and type 2 diabetes.J Diabetes Complications. 2018 Nov;32(11):1076-1084. doi: 10.1016/j.jdiacomp.2018.08.012. Epub 2018 Aug 19.
73 Transcription factor Nrf2-mediated antioxidant defense system in the development of diabetic retinopathy.Invest Ophthalmol Vis Sci. 2013 Jun 6;54(6):3941-8. doi: 10.1167/iovs.13-11598.
74 The G Allele of the rs12050217 Polymorphism in the BDKRB1 Gene Is Associated with Protection for Diabetic Retinopathy.Curr Eye Res. 2019 Sep;44(9):994-999. doi: 10.1080/02713683.2019.1610178. Epub 2019 May 15.
75 Bradykinin Type 1 Receptor - Inducible Nitric Oxide Synthase: A New Axis Implicated in Diabetic Retinopathy.Front Pharmacol. 2019 Mar 29;10:300. doi: 10.3389/fphar.2019.00300. eCollection 2019.
76 Glucocorticoid receptor inhibits Mller glial galectin-1 expression via DUSP1-dependent and -independent deactivation of AP-1 signalling.J Cell Mol Med. 2019 Oct;23(10):6785-6796. doi: 10.1111/jcmm.14559. Epub 2019 Jul 21.
77 Effects of Morphine on Interstitial Cells of Cajal in Rabbit Colon and Small Intestinal Transit: An Experimental Study.Curr Mol Med. 2020;20(3):240-246. doi: 10.2174/1566524019666191023112837.
78 Association of endothelial lipase Thr111Ile polymorphism with proliferative retinopathy in type 2 diabetes patients.Diabetes Metab. 2014 Dec;40(6):452-8. doi: 10.1016/j.diabet.2014.04.004. Epub 2014 May 19.
79 Decreased lysyl oxidase level protects against development of retinal vascular lesions in diabetic retinopathy.Exp Eye Res. 2019 Jul;184:221-226. doi: 10.1016/j.exer.2019.04.019. Epub 2019 May 6.
80 Therapeutic potential of a monoclonal antibody blocking the Wnt pathway in diabetic retinopathy.Diabetes. 2012 Nov;61(11):2948-57. doi: 10.2337/db11-0300. Epub 2012 Aug 13.
81 [Expression pattern of nitric oxide synthase in the retina of diabetic rats].Nan Fang Yi Ke Da Xue Xue Bao. 2007 Apr;27(4):454-7.
82 Activation of the NotchNox4reactive oxygen species signaling pathway induces cell death in high glucosetreated human retinal endothelial cells.Mol Med Rep. 2019 Jan;19(1):667-677. doi: 10.3892/mmr.2018.9637. Epub 2018 Nov 9.
83 Downregulation of the atrial natriuretic peptide/natriuretic peptide receptor-C system in the early stages of diabetic retinopathy in the rat.Mol Vis. 2005 Mar 18;11:216-24.
84 The role of netrin-1 in angiogenesis and diabetic retinopathy: a promising therapeutic strategy.Discov Med. 2017 May;23(128):315-323.
85 The P2X7 purinergic receptor: An emerging therapeutic target in cardiovascular diseases.Clin Chim Acta. 2018 Apr;479:196-207. doi: 10.1016/j.cca.2018.01.032. Epub 2018 Jan 31.
86 Transthyretin Upregulates Long Non-Coding RNA MEG3 by Affecting PABPC1 in Diabetic Retinopathy.Int J Mol Sci. 2019 Dec 13;20(24):6313. doi: 10.3390/ijms20246313.
87 Genome-wide association studies for diabetic macular edema and proliferative diabetic retinopathy.BMC Med Genet. 2018 May 8;19(1):71. doi: 10.1186/s12881-018-0587-8.
88 Effects of fenofibrate on inflammatory cytokines in diabetic retinopathy patients.Medicine (Baltimore). 2017 Aug;96(31):e7671. doi: 10.1097/MD.0000000000007671.
89 TEM7 (PLXDC1) in neovascular endothelial cells of fibrovascular membranes from patients with proliferative diabetic retinopathy.Invest Ophthalmol Vis Sci. 2008 Jul;49(7):3151-7. doi: 10.1167/iovs.07-1249. Epub 2008 Mar 3.
90 Resveratrol exhibits an effect on attenuating retina inflammatory condition and damage of diabetic retinopathy via PON1.Exp Eye Res. 2019 Apr;181:356-366. doi: 10.1016/j.exer.2018.11.023. Epub 2018 Nov 29.
91 IGFBP-3 reduces eNOS and PKCzeta phosphorylation, leading to lowered VEGF levels.Mol Vis. 2015 May 22;21:604-11. eCollection 2015.
92 Cost Effectiveness of Treatments for Diabetic Retinopathy: A Systematic Literature Review.Pharmacoeconomics. 2019 Aug;37(8):995-1010. doi: 10.1007/s40273-019-00800-w.
93 Secretogranin III: a diabetic retinopathy-selective angiogenic factor.Cell Mol Life Sci. 2018 Feb;75(4):635-647. doi: 10.1007/s00018-017-2635-5. Epub 2017 Aug 30.
94 Effect of fenofibrate on diabetic retinopathy in rats via SIRT1/NF-B signaling pathway.Eur Rev Med Pharmacol Sci. 2019 Oct;23(19):8630-8636. doi: 10.26355/eurrev_201910_19180.
95 Combined SIRT3 and SIRT5 deletion is associated with inner retinal dysfunction in a mouse model of type 1 diabetes.Sci Rep. 2019 Mar 7;9(1):3799. doi: 10.1038/s41598-019-40177-6.
96 Epigenetic control of early neurodegenerative events in diabetic retinopathy by the histone deacetylase SIRT6.J Neurochem. 2018 Jan;144(2):128-138. doi: 10.1111/jnc.14243. Epub 2017 Nov 21.
97 Comparisons of diabetic retinopathy events associated with glucose-lowering drugs in patients with type 2 diabetes mellitus: A network meta-analysis.Diabetes Obes Metab. 2018 May;20(5):1262-1279. doi: 10.1111/dom.13232. Epub 2018 Feb 23.
98 Role of Acid Sphingomyelinase in Shifting the Balance Between Proinflammatory and Reparative Bone Marrow Cells in Diabetic Retinopathy.Stem Cells. 2016 Apr;34(4):972-83. doi: 10.1002/stem.2259. Epub 2016 Jan 4.
99 Enhanced ROBO4 is mediated by up-regulation of HIF-1/SP1 or reduction in miR-125b-5p/miR-146a-5p in diabetic retinopathy.J Cell Mol Med. 2019 Jul;23(7):4723-4737. doi: 10.1111/jcmm.14369. Epub 2019 May 15.
100 Serine racemase deletion attenuates neurodegeneration and microvascular damage in diabetic retinopathy.PLoS One. 2018 Jan 5;13(1):e0190864. doi: 10.1371/journal.pone.0190864. eCollection 2018.
101 Problem-solving therapy for adults with diabetic retinopathy and diabetes-specific distress: a pilot randomized controlled trial.BMJ Open Diabetes Res Care. 2017 Feb 9;5(1):e000307. doi: 10.1136/bmjdrc-2016-000307. eCollection 2017.
102 RNA-Seq Revealed Novel Non-proliferative Retinopathy Specific Circulating MiRNAs in T2DM Patients.Front Genet. 2019 Jun 4;10:531. doi: 10.3389/fgene.2019.00531. eCollection 2019.
103 Iron Overload Accelerates the Progression of Diabetic Retinopathy in Association with Increased Retinal Renin Expression.Sci Rep. 2018 Feb 14;8(1):3025. doi: 10.1038/s41598-018-21276-2.
104 Transthyretin Exerts Pro-Apoptotic Effects in Human Retinal Microvascular Endothelial Cells Through a GRP78-Dependent Pathway in Diabetic Retinopathy.Cell Physiol Biochem. 2017;43(2):788-800. doi: 10.1159/000481562. Epub 2017 Sep 27.
105 [The study of thrombospondin-I (TSP1) expression in the early stages of diabetic retinopathy induced by streptozotocin].Fen Zi Xi Bao Sheng Wu Xue Bao. 2006 Oct;39(5):431-7.
106 Changes in TL1A levels and associated cytokines during pathogenesis of diabetic retinopathy.Mol Med Rep. 2017 Feb;15(2):573-580. doi: 10.3892/mmr.2016.6048. Epub 2016 Dec 14.
107 TRPC proteins contribute to development of diabetic retinopathy and regulate glyoxalase 1 activity and methylglyoxal accumulation.Mol Metab. 2018 Mar;9:156-167. doi: 10.1016/j.molmet.2018.01.003. Epub 2018 Jan 5.
108 A novel transthyretin/STAT4/miR-223-3p/FBXW7 signaling pathway affects neovascularization in diabetic retinopathy.Mol Cell Endocrinol. 2019 Dec 1;498:110541. doi: 10.1016/j.mce.2019.110541. Epub 2019 Aug 12.
109 The gene polymorphisms of UCP1 but not PPAR and TCF7L2 are associated with diabetic retinopathy in Chinese type 2 diabetes mellitus cases.Acta Ophthalmol. 2015 May;93(3):e223-9. doi: 10.1111/aos.12542. Epub 2014 Oct 1.
110 Common Sequence Variation in the VEGFC Gene Is Associated with Diabetic Retinopathy and Diabetic Macular Edema.Ophthalmology. 2015 Sep;122(9):1828-36. doi: 10.1016/j.ophtha.2015.05.004. Epub 2015 Jun 11.
111 Vascular Adhesion Protein-1 Blockade Suppresses Ocular Inflammation After Retinal Laser Photocoagulation in Mice.Invest Ophthalmol Vis Sci. 2017 Jun 1;58(7):3254-3261. doi: 10.1167/iovs.17-21555.
112 High-glucose-induced CARM1 expression regulates apoptosis of human retinal pigment epithelial cells via histone 3 arginine 17 dimethylation: role in diabetic retinopathy.Arch Biochem Biophys. 2014 Oct 15;560:36-43. doi: 10.1016/j.abb.2014.07.021. Epub 2014 Jul 27.
113 Nogo receptor knockdown and ciliary neurotrophic factor attenuate diabetic retinopathy in streptozotocin-induced diabetic rats.Mol Med Rep. 2017 Aug;16(2):2030-2036. doi: 10.3892/mmr.2017.6850. Epub 2017 Jun 23.
114 Proteinase and growth factor alterations revealed by gene microarray analysis of human diabetic corneas.Invest Ophthalmol Vis Sci. 2005 Oct;46(10):3604-15. doi: 10.1167/iovs.04-1507.
115 Association of genes on chromosome 6, GRIK2 , TMEM217 and TMEM63B (linked to MRPL14 ) with diabetic retinopathy.Ophthalmologica. 2013;229(1):54-60. doi: 10.1159/000342616. Epub 2012 Sep 28.
116 Association between angiotensin-converting enzyme gene polymorphism and diabetic retinopathy in the Chinese population.J Renin Angiotensin Aldosterone Syst. 2012 Jun;13(2):289-95. doi: 10.1177/1470320311432187. Epub 2012 Jan 16.
117 CDKAL1 rs7756992 is associated with diabetic retinopathy in a Chinese population with type 2 diabetes.Sci Rep. 2017 Aug 18;7(1):8812. doi: 10.1038/s41598-017-09010-w.
118 Relationship between retinol and risk of diabetic retinopathy: a case-control study.Asia Pac J Clin Nutr. 2019;28(3):607-613. doi: 10.6133/apjcn.201909_28(3).0021.
119 Association between retinoid-X receptor-gamma genetic polymorphisms and diabetic retinopathy.Genet Mol Res. 2011 Dec 5;10(4):3545-51. doi: 10.4238/2011.December.5.4.
120 The Role of Sigma1R in Mammalian Retina.Adv Exp Med Biol. 2017;964:267-284. doi: 10.1007/978-3-319-50174-1_18.
121 Thiamine transporter 2 is involved in high glucose-induced damage and altered thiamine availability in cell models of diabetic retinopathy.Diab Vasc Dis Res. 2020 Jan-Feb;17(1):1479164119878427. doi: 10.1177/1479164119878427. Epub 2019 Nov 14.
122 Levels of adhesion molecules in peripheral blood correlat with stages of diabetic retinopathy and may serve as bio markers for microvascular complications.Cytokine. 2018 Jun;106:76-79. doi: 10.1016/j.cyto.2017.10.014. Epub 2017 Nov 11.
123 Risk factors for retinal microvascular impairment in type 2 diabetic patients without diabetic retinopathy.PLoS One. 2018 Aug 9;13(8):e0202103. doi: 10.1371/journal.pone.0202103. eCollection 2018.
124 Meta-analysis of the association between aldose reductase gene (CA)n microsatellite variants and risk of diabetic retinopathy.Exp Ther Med. 2019 Dec;18(6):4499-4509. doi: 10.3892/etm.2019.8086. Epub 2019 Oct 8.
125 Spermine oxidase: A promising therapeutic target for neurodegeneration in diabetic retinopathy.Pharmacol Res. 2019 Sep;147:104299. doi: 10.1016/j.phrs.2019.104299. Epub 2019 Jun 15.
126 Bioinformatic analysis of retinal gene function and expression in diabetic rats.Exp Ther Med. 2017 Sep;14(3):2485-2492. doi: 10.3892/etm.2017.4805. Epub 2017 Jul 19.
127 UPP mediated Diabetic Retinopathy via ROS/PARP and NF-B inflammatory factor pathways.Curr Mol Med. 2015;15(8):790-9. doi: 10.2174/1566524015666150921110500.
128 NAP modulates hyperglycemic-inflammatory event of diabetic retina by counteracting outer blood retinal barrier damage.J Cell Physiol. 2019 Apr;234(4):5230-5240. doi: 10.1002/jcp.27331. Epub 2018 Oct 30.
129 Diabetic retinopathy: Focus on NADPH oxidase and its potential as therapeutic target.Eur J Pharmacol. 2019 Jun 15;853:381-387. doi: 10.1016/j.ejphar.2019.04.038. Epub 2019 Apr 19.
130 Increased Expression of Ecto-NOX Disulfide-thiol Exchanger 1 (ENOX1) in Diabetic Mice Retina and its Involvement in Diabetic Retinopathy Development.In Vivo. 2019 Nov-Dec;33(6):1801-1806. doi: 10.21873/invivo.11671.
131 Actions and Potential Therapeutic Applications of Growth Hormone-Releasing Hormone Agonists.Endocrinology. 2019 Jul 1;160(7):1600-1612. doi: 10.1210/en.2019-00111.
132 Genome-wide association study of diabetic retinopathy in a Taiwanese population.Ophthalmology. 2011 Apr;118(4):642-8. doi: 10.1016/j.ophtha.2010.07.020. Epub 2011 Feb 18.
133 Genome-wide meta-analysis for severe diabetic retinopathy.Hum Mol Genet. 2011 Jun 15;20(12):2472-81. doi: 10.1093/hmg/ddr121. Epub 2011 Mar 26.
134 Differential expressions of SIRT1, SIRT3, and SIRT4 in peripheral blood mononuclear cells from patients with type 2 diabetic retinopathy.Arch Physiol Biochem. 2020 Oct;126(4):363-368. doi: 10.1080/13813455.2018.1543328. Epub 2018 Dec 20.
135 Chromosome 15q21-22-related polymorphisms and haplotypes are associated with susceptibility to type-2 diabetic nonproliferative retinopathy.Genet Test Mol Biomarkers. 2012 May;16(5):442-8. doi: 10.1089/gtmb.2011.0092. Epub 2012 Mar 12.
136 Loss of Response Gene to Complement 32 (RGC-32) in Diabetic Mouse Retina Is Involved in Retinopathy Development.Int J Mol Sci. 2018 Nov 17;19(11):3629. doi: 10.3390/ijms19113629.
137 Knockdown of ALK7 inhibits high glucose-induced oxidative stress and apoptosis in retinal pigment epithelial cells.Clin Exp Pharmacol Physiol. 2020 Feb;47(2):313-321. doi: 10.1111/1440-1681.13189. Epub 2019 Nov 19.
138 Adenosine Deaminase-2-Induced Hyperpermeability in Human Retinal Vascular Endothelial Cells Is Suppressed by MicroRNA-146b-3p.Invest Ophthalmol Vis Sci. 2017 Feb 1;58(2):933-943. doi: 10.1167/iovs.16-19782.
139 NAP counteracts hyperglycemia/hypoxia induced retinal pigment epithelial barrier breakdown through modulation of HIFs and VEGF expression.J Cell Physiol. 2018 Feb;233(2):1120-1128. doi: 10.1002/jcp.25971. Epub 2017 Sep 28.
140 Clinical and experimental study on angiopoietin-like protein 8 associated with proliferative diabetic retinopathy.Int J Ophthalmol. 2017 Dec 18;10(12):1819-1823. doi: 10.18240/ijo.2017.12.05. eCollection 2017.
141 Aquaporin 4 knockdown exacerbates streptozotocin-induced diabetic retinopathy through aggravating inflammatory response.Exp Eye Res. 2012 May;98:37-43. doi: 10.1016/j.exer.2012.02.013. Epub 2012 Mar 16.
142 High levels of circulating endothelial progenitor cells in patients with diabetic retinopathy are positively associated with ARHGAP22 expression.Oncotarget. 2018 Apr 3;9(25):17858-17866. doi: 10.18632/oncotarget.24909. eCollection 2018 Apr 3.
143 (Pro)renin receptor: Involvement in diabetic retinopathy and development of molecular targeted therapy.J Diabetes Investig. 2019 Jan;10(1):6-17. doi: 10.1111/jdi.12842. Epub 2018 May 13.
144 Widefield optical coherence tomography angiography in diabetic retinopathy.Acta Diabetol. 2019 Dec;56(12):1293-1303. doi: 10.1007/s00592-019-01410-w. Epub 2019 Aug 29.
145 CTRP3 is a novel biomarker for diabetic retinopathy and inhibits HGHL-induced VCAM-1 expression in an AMPK-dependent manner.PLoS One. 2017 Jun 20;12(6):e0178253. doi: 10.1371/journal.pone.0178253. eCollection 2017.
146 C1q/TNF-related protein-9 attenuates retinal inflammation and protects blood-retinal barrier in db/db mice.Eur J Pharmacol. 2019 Jun 15;853:289-298. doi: 10.1016/j.ejphar.2019.04.012. Epub 2019 Apr 10.
147 Alanine variant of the Pro12Ala polymorphism of the PPARgamma gene might be associated with decreased risk of diabetic retinopathy in type 2 diabetes.Diabetes Res Clin Pract. 2008 Apr;80(1):139-45. doi: 10.1016/j.diabres.2007.11.001. Epub 2008 Feb 20.
148 Comprehensive analysis of vitreous humor chemokines in type 2 diabetic patients with and without diabetic retinopathy.Acta Diabetol. 2019 Jul;56(7):797-805. doi: 10.1007/s00592-019-01317-6. Epub 2019 Mar 25.
149 The peroxisome proliferator-activated receptor-/ antagonist GSK0660 mitigates retinal cell inflammation and leukostasis.Exp Eye Res. 2020 Jan;190:107885. doi: 10.1016/j.exer.2019.107885. Epub 2019 Nov 20.
150 Ursodeoxycholic acid ameliorates diabetic retinopathy via reducing retinal inflammation and reversing the breakdown of blood-retinal barrier.Eur J Pharmacol. 2018 Dec 5;840:20-27. doi: 10.1016/j.ejphar.2018.09.027. Epub 2018 Sep 27.
151 Evaluation of aqueous humor and serum cortistatin levels in diabetic patients with and without diabetic retinopathy.Eur J Ophthalmol. 2021 Mar;31(2):638-642. doi: 10.1177/1120672119894847. Epub 2019 Dec 10.
152 Protective role of pigment epithelium-derived factor (PEDF) in early phase of experimental diabetic retinopathy.Diabetes Metab Res Rev. 2009 Oct;25(7):678-86. doi: 10.1002/dmrr.1007.
153 Endomucin restores depleted endothelial glycocalyx in the retinas of streptozotocin-induced diabetic rats.FASEB J. 2019 Dec;33(12):13346-13357. doi: 10.1096/fj.201901161R. Epub 2019 Sep 21.
154 The association of serum and vitreous adropin concentrations with diabetic retinopathy.Ann Clin Biochem. 2019 Mar;56(2):253-258. doi: 10.1177/0004563218820359. Epub 2019 Feb 24.
155 MiRNA-144-3p inhibits high glucose induced cell proliferation through suppressing FGF16.Biosci Rep. 2019 Jul 25;39(7):BSR20181788. doi: 10.1042/BSR20181788. Print 2019 Jul 31.
156 In vitro and in vivo alterations of enzymatic glycosylation in diabetes.Life Sci. 1999;64(17):1571-83. doi: 10.1016/s0024-3205(99)00094-6.
157 Somatolactogens and diabetic retinopathy.Growth Horm IGF Res. 2018 Aug;41:42-47. doi: 10.1016/j.ghir.2018.02.002. Epub 2018 Feb 6.
158 Transducin1, Phototransduction and the Development of Early Diabetic Retinopathy.Invest Ophthalmol Vis Sci. 2019 Apr 1;60(5):1538-1546. doi: 10.1167/iovs.18-26433.
159 Histone HIST1H1C/H1.2 regulates autophagy in the development of diabetic retinopathy.Autophagy. 2017 May 4;13(5):941-954. doi: 10.1080/15548627.2017.1293768. Epub 2017 Mar 2.
160 DNA Methylomes Reveal Biological Networks Involved in Human Eye Development, Functions and Associated Disorders.Sci Rep. 2017 Sep 18;7(1):11762. doi: 10.1038/s41598-017-12084-1.
161 Inhibitor of growth 4 affects hypoxia-induced migration and angiogenesis regulation in retinal pigment epithelial cells.J Cell Physiol. 2019 Sep;234(9):15243-15256. doi: 10.1002/jcp.28170. Epub 2019 Jan 22.
162 Restructuring of the Gut Microbiome by Intermittent Fasting Prevents Retinopathy and Prolongs Survival in db/db Mice.Diabetes. 2018 Sep;67(9):1867-1879. doi: 10.2337/db18-0158. Epub 2018 Apr 30.
163 Sensitive tear screening of diabetic retinopathy with dual biomarkers enabled using a rapid electrokinetic patterning platform.Lab Chip. 2020 Jan 21;20(2):356-362. doi: 10.1039/c9lc00975b. Epub 2019 Dec 18.
164 miR-204-5p promotes diabetic retinopathy development via downregulation of microtubule-associated protein 1 light chain 3.Exp Ther Med. 2019 Apr;17(4):2945-2952. doi: 10.3892/etm.2019.7327. Epub 2019 Feb 28.
165 Mitochondrial fusion and maintenance of mitochondrial homeostasis in diabetic retinopathy.Biochim Biophys Acta Mol Basis Dis. 2019 Jun 1;1865(6):1617-1626. doi: 10.1016/j.bbadis.2019.03.013. Epub 2019 Mar 25.
166 Receptor for advanced glycation end-product (RAGE) gene polymorphism 2245G/A is associated with pro-inflammatory, oxidative-glycation markers and sRAGE in diabetic retinopathy.Gene. 2013 Jun 1;521(2):227-33. doi: 10.1016/j.gene.2013.03.062. Epub 2013 Mar 29.
167 MiRNA-138-5p protects the early diabetic retinopathy by regulating NOVA1.Eur Rev Med Pharmacol Sci. 2019 Sep;23(18):7749-7756. doi: 10.26355/eurrev_201909_18984.
168 Overexpression of nuclear transport factor 2 may protect against diabetic retinopathy.Mol Vis. 2009;15:861-9. Epub 2009 Apr 27.
169 Erythropoietin protects outer blood-retinal barrier in experimental diabetic retinopathy by up-regulating ZO-1 and occludin.Clin Exp Ophthalmol. 2019 Dec;47(9):1182-1197. doi: 10.1111/ceo.13619. Epub 2019 Sep 15.
170 Identification of O-GlcNAcylation Modification in Diabetic Retinopathy and Crosstalk with Phosphorylation of STAT3 in Retina Vascular Endothelium Cells.Cell Physiol Biochem. 2018;49(4):1389-1402. doi: 10.1159/000493444. Epub 2018 Sep 11.
171 Melanopsin-expressing retinal ganglion cells in aging and disease.Histol Histopathol. 2019 Dec;34(12):1299-1311. doi: 10.14670/HH-18-138. Epub 2019 Jun 20.
172 Interocular Asymmetry of the Ganglion Cell-inner Plexiform Layer in Diabetic Retinopathy.Optom Vis Sci. 2018 Jul;95(7):594-601. doi: 10.1097/OPX.0000000000001242.
173 The role of plasmalemma vesicle-associated protein in pathological breakdown of blood-brain and blood-retinal barriers: potential novel therapeutic target for cerebral edema and diabetic macular edema.Fluids Barriers CNS. 2018 Sep 20;15(1):24. doi: 10.1186/s12987-018-0109-2.
174 Optical coherence tomography angiography study of the retinal vascular plexuses in type 1 diabetes without retinopathy.Eye (Lond). 2020 Feb;34(2):307-311. doi: 10.1038/s41433-019-0513-0. Epub 2019 Jul 4.
175 Antiangiogenic effects and transcriptional regulation of pigment epithelium-derived factor in diabetic retinopathy.Microvasc Res. 2010 Jul;80(1):31-6. doi: 10.1016/j.mvr.2010.02.012. Epub 2010 Feb 26.
176 Loss of Melanopsin-Expressing Retinal Ganglion Cells in Patients With Diabetic Retinopathy.Invest Ophthalmol Vis Sci. 2017 Apr 1;58(4):2187-2192. doi: 10.1167/iovs.16-21168.
177 miR-365 promotes diabetic retinopathy through inhibiting Timp3 and increasing oxidative stress.Exp Eye Res. 2018 Mar;168:89-99. doi: 10.1016/j.exer.2017.11.006. Epub 2017 Nov 28.
178 Opioid Receptor Agonism Preserves the Retinal Pigmented Epithelial Cell Tight Junctions and Ameliorates the Retinopathy in Experimental Diabetes.Invest Ophthalmol Vis Sci. 2019 Sep 3;60(12):3842-3853. doi: 10.1167/iovs.19-26761.
179 The Association of a Genetic Variant in SCAF8-CNKSR3 with Diabetic Kidney Disease and Diabetic Retinopathy in a Chinese Population.J Diabetes Res. 2017;2017:6542689. doi: 10.1155/2017/6542689. Epub 2017 Mar 19.
180 Serum SCUBE-1 levels in patients with diabetic retinopathy.Int Ophthalmol. 2020 Apr;40(4):859-865. doi: 10.1007/s10792-019-01249-8. Epub 2019 Dec 2.
181 Polymorphisms in Sorbitol-Aldose Reductase (Polyol) Pathway Genes and Their Influence on Risk of Diabetic Retinopathy Among Han Chinese.Med Sci Monit. 2019 Sep 20;25:7073-7078. doi: 10.12659/MSM.917011.
182 Differential proteome analysis of serum proteins associated with the development of type 2 diabetes mellitus in the KK-A(y) mouse model using the iTRAQ technique.J Proteomics. 2013 Jun 12;84:40-51. doi: 10.1016/j.jprot.2013.03.014. Epub 2013 Mar 29.
183 Mitochondrial uncoupling has no effect on microvascular complications in type 2 diabetes.Sci Rep. 2019 Jan 29;9(1):881. doi: 10.1038/s41598-018-37376-y.
184 Activation of the sweet taste receptor T1R3 by sucralose attenuates VEGF-induced vasculogenesis in a cell model of the retinal microvascular endothelium.Graefes Arch Clin Exp Ophthalmol. 2019 Jan;257(1):71-81. doi: 10.1007/s00417-018-4157-8. Epub 2018 Oct 23.
185 Diabetic retinopathy and damage to mitochondrial structure and transport machinery.Invest Ophthalmol Vis Sci. 2011 Nov 7;52(12):8739-46. doi: 10.1167/iovs.11-8045.
186 Neuroprotective Effects of Ginsenoside Rg1 against Hyperphosphorylated Tau-Induced Diabetic Retinal Neurodegeneration via Activation of IRS-1/Akt/GSK3 Signaling.J Agric Food Chem. 2019 Jul 31;67(30):8348-8360. doi: 10.1021/acs.jafc.9b02954. Epub 2019 Jul 19.
187 Common variants in or near ZNRF1, COLEC12, SCYL1BP1 and API5 are associated with diabetic retinopathy in Chinese patients with type 2 diabetes.Diabetologia. 2015 Jun;58(6):1231-8. doi: 10.1007/s00125-015-3569-9. Epub 2015 Mar 28.
188 Small GTPase ARF6 controls VEGFR2 trafficking and signaling in diabetic retinopathy.J Clin Invest. 2017 Dec 1;127(12):4569-4582. doi: 10.1172/JCI91770. Epub 2017 Oct 23.
189 Age-related macular degeneration in a South Indian population, with and without diabetes.Eye (Lond). 2017 Aug;31(8):1176-1183. doi: 10.1038/eye.2017.47. Epub 2017 Apr 7.
190 Association analysis of nine candidate gene polymorphisms in Indian patients with type 2 diabetic retinopathy.BMC Med Genet. 2010 Nov 10;11:158. doi: 10.1186/1471-2350-11-158.
191 Tumor necrosis factor-alpha in diabetic plasma increases the activity of core 2 GlcNAc-T and adherence of human leukocytes to retinal endothelial cells: significance of core 2 GlcNAc-T in diabetic retinopathy.Diabetes. 2004 Nov;53(11):2968-76. doi: 10.2337/diabetes.53.11.2968.
192 Caspase-14: a novel caspase in the retina with a potential role in diabetic retinopathy.Mol Vis. 2012;18:1895-906. Epub 2012 Jul 14.
193 Association between LEKR1-CCNL1 and IGSF21-KLHDC7A gene polymorphisms and diabetic retinopathy of type 2 diabetes mellitus in the Chinese Han population.J Gene Med. 2016 Oct;18(10):282-287. doi: 10.1002/jgm.2926.
194 Human lymphocyte antigen DR7 protects against proliferative retinopathy with type II diabetes mellitus.Arch Med Res. 2002 Mar-Apr;33(2):123-7. doi: 10.1016/s0188-4409(01)00378-2.
195 CPVL/CHN2 genetic variant is associated with diabetic retinopathy in Chinese type 2 diabetic patients.Diabetes. 2011 Nov;60(11):3085-9. doi: 10.2337/db11-0028. Epub 2011 Sep 12.
196 Overexpression of matrix metalloproteinase-10 and matrix metalloproteinase-3 in human diabetic corneas: a possible mechanism of basement membrane and integrin alterations.Am J Pathol. 2001 Feb;158(2):723-34. doi: 10.1016/S0002-9440(10)64015-1.
197 GLP-1 Treatment Improves Diabetic Retinopathy by Alleviating Autophagy through GLP-1R-ERK1/2-HDAC6 Signaling Pathway.Int J Med Sci. 2017 Sep 19;14(12):1203-1212. doi: 10.7150/ijms.20962. eCollection 2017.
198 Haptoglobin phenotypes in diabetes mellitus and diabetic retinopathy.Hum Hered. 1991;41(5):347-50. doi: 10.1159/000154023.
199 Retinol binding protein 3 is increased in the retina of patients with diabetes resistant to diabetic retinopathy.Sci Transl Med. 2019 Jul 3;11(499):eaau6627. doi: 10.1126/scitranslmed.aau6627.
200 The rs6060566 of the reactive oxygen species modulator 1 (Romo-1) gene affects Romo-1 expression and the development of diabetic retinopathy in Caucasians with type 2 diabetes.Acta Ophthalmol. 2015 Dec;93(8):e654-7. doi: 10.1111/aos.12723. Epub 2015 Mar 30.
201 Role of SLMAP genetic variants in susceptibility of diabetes and diabetic retinopathy in Qatari population.J Transl Med. 2015 Feb 15;13:61. doi: 10.1186/s12967-015-0411-6.
202 A M55V polymorphism in the SUMO4 gene is associated with a reduced prevalence of diabetic retinopathy in patients with Type 1 diabetes.Exp Clin Endocrinol Diabetes. 2008 Jan;116(1):14-7. doi: 10.1055/s-2007-985357. Epub 2007 Oct 9.
203 TGF-beta1 and TSC-22 gene polymorphisms and susceptibility to microvascular complications in type 2 diabetes.Nephron Physiol. 2007;106(4):p69-75. doi: 10.1159/000104874. Epub 2007 Jul 2.