General Information of Drug Off-Target (DOT) (ID: OTYJNNMD)

DOT Name Ribosomal protein S6 kinase alpha-3 (RPS6KA3)
Synonyms
S6K-alpha-3; EC 2.7.11.1; 90 kDa ribosomal protein S6 kinase 3; p90-RSK 3; p90RSK3; Insulin-stimulated protein kinase 1; ISPK-1; MAP kinase-activated protein kinase 1b; MAPK-activated protein kinase 1b; MAPKAP kinase 1b; MAPKAPK-1b; Ribosomal S6 kinase 2; RSK-2; pp90RSK2
Gene Name RPS6KA3
Related Disease
Coffin-Lowry syndrome ( )
Intellectual disability, X-linked 19 ( )
Non-syndromic X-linked intellectual disability ( )
Symptomatic form of Coffin-Lowry syndrome in female carriers ( )
UniProt ID
KS6A3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
4D9T; 4D9U; 4JG6; 4JG7; 4JG8; 4NUS; 4NW5; 4NW6; 5D9K; 5D9L; 7OPO; 8EQ5
EC Number
2.7.11.1
Pfam ID
PF00069 ; PF00433
Sequence
MPLAQLADPWQKMAVESPSDSAENGQQIMDEPMGEEEINPQTEEVSIKEIAITHHVKEGH
EKADPSQFELLKVLGQGSFGKVFLVKKISGSDARQLYAMKVLKKATLKVRDRVRTKMERD
ILVEVNHPFIVKLHYAFQTEGKLYLILDFLRGGDLFTRLSKEVMFTEEDVKFYLAELALA
LDHLHSLGIIYRDLKPENILLDEEGHIKLTDFGLSKESIDHEKKAYSFCGTVEYMAPEVV
NRRGHTQSADWWSFGVLMFEMLTGTLPFQGKDRKETMTMILKAKLGMPQFLSPEAQSLLR
MLFKRNPANRLGAGPDGVEEIKRHSFFSTIDWNKLYRREIHPPFKPATGRPEDTFYFDPE
FTAKTPKDSPGIPPSANAHQLFRGFSFVAITSDDESQAMQTVGVHSIVQQLHRNSIQFTD
GYEVKEDIGVGSYSVCKRCIHKATNMEFAVKIIDKSKRDPTEEIEILLRYGQHPNIITLK
DVYDDGKYVYVVTELMKGGELLDKILRQKFFSEREASAVLFTITKTVEYLHAQGVVHRDL
KPSNILYVDESGNPESIRICDFGFAKQLRAENGLLMTPCYTANFVAPEVLKRQGYDAACD
IWSLGVLLYTMLTGYTPFANGPDDTPEEILARIGSGKFSLSGGYWNSVSDTAKDLVSKML
HVDPHQRLTAALVLRHPWIVHWDQLPQYQLNRQDAPHLVKGAMAATYSALNRNQSPVLEP
VGRSTLAQRRGIKKITSTAL
Function
Serine/threonine-protein kinase that acts downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signaling and mediates mitogenic and stress-induced activation of the transcription factors CREB1, ETV1/ER81 and NR4A1/NUR77, regulates translation through RPS6 and EIF4B phosphorylation, and mediates cellular proliferation, survival, and differentiation by modulating mTOR signaling and repressing pro-apoptotic function of BAD and DAPK1. In fibroblast, is required for EGF-stimulated phosphorylation of CREB1 and histone H3 at 'Ser-10', which results in the subsequent transcriptional activation of several immediate-early genes. In response to mitogenic stimulation (EGF and PMA), phosphorylates and activates NR4A1/NUR77 and ETV1/ER81 transcription factors and the cofactor CREBBP. Upon insulin-derived signal, acts indirectly on the transcription regulation of several genes by phosphorylating GSK3B at 'Ser-9' and inhibiting its activity. Phosphorylates RPS6 in response to serum or EGF via an mTOR-independent mechanism and promotes translation initiation by facilitating assembly of the preinitiation complex. In response to insulin, phosphorylates EIF4B, enhancing EIF4B affinity for the EIF3 complex and stimulating cap-dependent translation. Is involved in the mTOR nutrient-sensing pathway by directly phosphorylating TSC2 at 'Ser-1798', which potently inhibits TSC2 ability to suppress mTOR signaling, and mediates phosphorylation of RPTOR, which regulates mTORC1 activity and may promote rapamycin-sensitive signaling independently of the PI3K/AKT pathway. Mediates cell survival by phosphorylating the pro-apoptotic proteins BAD and DAPK1 and suppressing their pro-apoptotic function. Promotes the survival of hepatic stellate cells by phosphorylating CEBPB in response to the hepatotoxin carbon tetrachloride (CCl4). Is involved in cell cycle regulation by phosphorylating the CDK inhibitor CDKN1B, which promotes CDKN1B association with 14-3-3 proteins and prevents its translocation to the nucleus and inhibition of G1 progression. In LPS-stimulated dendritic cells, is involved in TLR4-induced macropinocytosis, and in myeloma cells, acts as effector of FGFR3-mediated transformation signaling, after direct phosphorylation at Tyr-529 by FGFR3. Negatively regulates EGF-induced MAPK1/3 phosphorylation via phosphorylation of SOS1. Phosphorylates SOS1 at 'Ser-1134' and 'Ser-1161' that create YWHAB and YWHAE binding sites and which contribute to the negative regulation of MAPK1/3 phosphorylation. Phosphorylates EPHA2 at 'Ser-897', the RPS6KA-EPHA2 signaling pathway controls cell migration. Acts as a regulator of osteoblast differentiation by mediating phosphorylation of ATF4, thereby promoting ATF4 transactivation activity.
Tissue Specificity Expressed in many tissues, highest levels in skeletal muscle.
KEGG Pathway
MAPK sig.ling pathway (hsa04010 )
Oocyte meiosis (hsa04114 )
mTOR sig.ling pathway (hsa04150 )
Thermogenesis (hsa04714 )
Long-term potentiation (hsa04720 )
Neurotrophin sig.ling pathway (hsa04722 )
Progesterone-mediated oocyte maturation (hsa04914 )
Insulin resistance (hsa04931 )
Yersinia infection (hsa05135 )
Chemical carcinogenesis - receptor activation (hsa05207 )
Reactome Pathway
CREB phosphorylation (R-HSA-199920 )
Senescence-Associated Secretory Phenotype (SASP) (R-HSA-2559582 )
Recycling pathway of L1 (R-HSA-437239 )
CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling (R-HSA-442742 )
RSK activation (R-HSA-444257 )
Gastrin-CREB signalling pathway via PKC and MAPK (R-HSA-881907 )
ERK/MAPK targets (R-HSA-198753 )

Molecular Interaction Atlas (MIA) of This DOT

4 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Coffin-Lowry syndrome DISMTBDA Definitive X-linked [1]
Intellectual disability, X-linked 19 DIS240KZ Strong X-linked [2]
Non-syndromic X-linked intellectual disability DIS71AI3 Supportive X-linked [3]
Symptomatic form of Coffin-Lowry syndrome in female carriers DISMIAI3 Supportive Autosomal dominant [4]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Ribosomal protein S6 kinase alpha-3 (RPS6KA3). [5]
Coumarin DM0N8ZM Investigative Coumarin affects the phosphorylation of Ribosomal protein S6 kinase alpha-3 (RPS6KA3). [27]
Sulfate DMW0ZBF Investigative Sulfate affects the methylation of Ribosomal protein S6 kinase alpha-3 (RPS6KA3). [29]
------------------------------------------------------------------------------------
29 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Ribosomal protein S6 kinase alpha-3 (RPS6KA3). [6]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Ribosomal protein S6 kinase alpha-3 (RPS6KA3). [7]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Ribosomal protein S6 kinase alpha-3 (RPS6KA3). [8]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Ribosomal protein S6 kinase alpha-3 (RPS6KA3). [9]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Ribosomal protein S6 kinase alpha-3 (RPS6KA3). [10]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Ribosomal protein S6 kinase alpha-3 (RPS6KA3). [11]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Ribosomal protein S6 kinase alpha-3 (RPS6KA3). [12]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Ribosomal protein S6 kinase alpha-3 (RPS6KA3). [13]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Ribosomal protein S6 kinase alpha-3 (RPS6KA3). [14]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Ribosomal protein S6 kinase alpha-3 (RPS6KA3). [15]
Testosterone DM7HUNW Approved Testosterone increases the expression of Ribosomal protein S6 kinase alpha-3 (RPS6KA3). [15]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Ribosomal protein S6 kinase alpha-3 (RPS6KA3). [16]
Menadione DMSJDTY Approved Menadione affects the expression of Ribosomal protein S6 kinase alpha-3 (RPS6KA3). [17]
Capsaicin DMGMF6V Approved Capsaicin increases the expression of Ribosomal protein S6 kinase alpha-3 (RPS6KA3). [18]
Sertraline DM0FB1J Approved Sertraline decreases the expression of Ribosomal protein S6 kinase alpha-3 (RPS6KA3). [19]
Ximelegatran DMU8ANS Approved Ximelegatran decreases the activity of Ribosomal protein S6 kinase alpha-3 (RPS6KA3). [20]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Ribosomal protein S6 kinase alpha-3 (RPS6KA3). [21]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Ribosomal protein S6 kinase alpha-3 (RPS6KA3). [22]
Tamibarotene DM3G74J Phase 3 Tamibarotene decreases the expression of Ribosomal protein S6 kinase alpha-3 (RPS6KA3). [7]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Ribosomal protein S6 kinase alpha-3 (RPS6KA3). [12]
UCN-01 DMUNJZB Phase 2 UCN-01 decreases the activity of Ribosomal protein S6 kinase alpha-3 (RPS6KA3). [20]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Ribosomal protein S6 kinase alpha-3 (RPS6KA3). [6]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the activity of Ribosomal protein S6 kinase alpha-3 (RPS6KA3). [24]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the expression of Ribosomal protein S6 kinase alpha-3 (RPS6KA3). [8]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of Ribosomal protein S6 kinase alpha-3 (RPS6KA3). [25]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Ribosomal protein S6 kinase alpha-3 (RPS6KA3). [26]
CH-223191 DMMJZYC Investigative CH-223191 increases the expression of Ribosomal protein S6 kinase alpha-3 (RPS6KA3). [28]
Daidzein DMRFTJX Investigative Daidzein increases the expression of Ribosomal protein S6 kinase alpha-3 (RPS6KA3). [12]
H-89 DM4RVGO Investigative H-89 decreases the activity of Ribosomal protein S6 kinase alpha-3 (RPS6KA3). [20]
------------------------------------------------------------------------------------
⏷ Show the Full List of 29 Drug(s)
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
DNCB DMDTVYC Phase 2 DNCB affects the binding of Ribosomal protein S6 kinase alpha-3 (RPS6KA3). [23]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 A missense mutation in RPS6KA3 (RSK2) responsible for non-specific mental retardation. Nat Genet. 1999 May;22(1):13-4. doi: 10.1038/8719.
3 Mutations in the RSK2(RPS6KA3) gene cause Coffin-Lowry syndrome and nonsyndromic X-linked mental retardation. Clin Genet. 2006 Dec;70(6):509-15. doi: 10.1111/j.1399-0004.2006.00723.x.
4 RPS6KA3-Related Intellectual Disability. 2002 Jul 16 [updated 2023 Mar 16]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews(?) [Internet]. Seattle (WA): University of Washington, Seattle; 1993C2024.
5 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
6 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
7 Differential modulation of PI3-kinase/Akt pathway during all-trans retinoic acid- and Am80-induced HL-60 cell differentiation revealed by DNA microarray analysis. Biochem Pharmacol. 2004 Dec 1;68(11):2177-86.
8 Gene expression changes associated with cytotoxicity identified using cDNA arrays. Funct Integr Genomics. 2000 Sep;1(2):114-26.
9 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
10 Extremely low copper concentrations affect gene expression profiles of human prostate epithelial cell lines. Chem Biol Interact. 2010 Oct 6;188(1):214-9.
11 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
12 Expression profiling of the estrogen responsive genes in response to phytoestrogens using a customized DNA microarray. FEBS Lett. 2005 Mar 14;579(7):1732-40.
13 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
14 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
15 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
16 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
17 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
18 A comparative proteomic analysis for capsaicin-induced apoptosis between human hepatocarcinoma (HepG2) and human neuroblastoma (SK-N-SH) cells. Proteomics. 2008 Nov;8(22):4748-67. doi: 10.1002/pmic.200800094.
19 Sertraline induces endoplasmic reticulum stress in hepatic cells. Toxicology. 2014 Aug 1;322:78-88. doi: 10.1016/j.tox.2014.05.007. Epub 2014 May 24.
20 Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J. 2000 Oct 1;351(Pt 1):95-105.
21 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
22 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
23 Proteomic analysis of the cellular response to a potent sensitiser unveils the dynamics of haptenation in living cells. Toxicology. 2020 Dec 1;445:152603. doi: 10.1016/j.tox.2020.152603. Epub 2020 Sep 28.
24 Use of human stem cell derived cardiomyocytes to examine sunitinib mediated cardiotoxicity and electrophysiological alterations. Toxicol Appl Pharmacol. 2011 Nov 15;257(1):74-83. doi: 10.1016/j.taap.2011.08.020. Epub 2011 Aug 27.
25 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134. doi: 10.1016/j.envres.2019.03.035. Epub 2019 Mar 18.
26 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
27 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
28 Adaptive changes in global gene expression profile of lung carcinoma A549 cells acutely exposed to distinct types of AhR ligands. Toxicol Lett. 2018 Aug;292:162-174.
29 Short-term airborne particulate matter exposure alters the epigenetic landscape of human genes associated with the mitogen-activated protein kinase network: a cross-sectional study. Environ Health. 2014 Nov 13;13:94. doi: 10.1186/1476-069X-13-94.