General Information of Drug Off-Target (DOT) (ID: OTGDISIT)

DOT Name Squalene synthase (FDFT1)
Synonyms SQS; SS; EC 2.5.1.21; FPP:FPP farnesyltransferase; Farnesyl-diphosphate farnesyltransferase; Farnesyl-diphosphate farnesyltransferase 1
Gene Name FDFT1
Related Disease
Squalene synthase deficiency ( )
UniProt ID
FDFT_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1EZF; 3ASX; 3LEE; 3Q2Z; 3Q30; 3V66; 3VJ8; 3VJ9; 3VJA; 3VJB; 3VJC; 3WC9; 3WCD; 3WCF; 3WCH; 3WCI; 3WCJ; 3WCL; 3WCM; 3WEF; 3WEG; 3WEH; 3WEI; 3WEJ; 3WEK; 3WSA; 6PYJ; 6PYV; 6PYW; 6PZ5
EC Number
2.5.1.21
Pfam ID
PF00494
Sequence
MEFVKCLGHPEEFYNLVRFRIGGKRKVMPKMDQDSLSSSLKTCYKYLNQTSRSFAAVIQA
LDGEMRNAVCIFYLVLRALDTLEDDMTISVEKKVPLLHNFHSFLYQPDWRFMESKEKDRQ
VLEDFPTISLEFRNLAEKYQTVIADICRRMGIGMAEFLDKHVTSEQEWDKYCHYVAGLVG
IGLSRLFSASEFEDPLVGEDTERANSMGLFLQKTNIIRDYLEDQQGGREFWPQEVWSRYV
KKLGDFAKPENIDLAVQCLNELITNALHHIPDVITYLSRLRNQSVFNFCAIPQVMAIATL
AACYNNQQVFKGAVKIRKGQAVTLMMDATNMPAVKAIIYQYMEEIYHRIPDSDPSSSKTR
QIISTIRTQNLPNCQLISRSHYSPIYLSFVMLLAALSWQYLTTLSQVTEDYVQTGEH
Function
Catalyzes the condensation of 2 farnesyl pyrophosphate (FPP) moieties to form squalene. Proceeds in two distinct steps. In the first half-reaction, two molecules of FPP react to form the stable presqualene diphosphate intermediate (PSQPP), with concomitant release of a proton and a molecule of inorganic diphosphate. In the second half-reaction, PSQPP undergoes heterolysis, isomerization, and reduction with NADPH or NADH to form squalene. It is the first committed enzyme of the sterol biosynthesis pathway.
Tissue Specificity Widely expressed.
KEGG Pathway
Steroid biosynthesis (hsa00100 )
Metabolic pathways (hsa01100 )
Reactome Pathway
PPARA activates gene expression (R-HSA-1989781 )
Activation of gene expression by SREBF (SREBP) (R-HSA-2426168 )
Cholesterol biosynthesis (R-HSA-191273 )
BioCyc Pathway
MetaCyc:HS01329-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Squalene synthase deficiency DIS8EKG3 Limited Autosomal recessive [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 6 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Doxorubicin DMVP5YE Approved Squalene synthase (FDFT1) decreases the response to substance of Doxorubicin. [39]
Etoposide DMNH3PG Approved Squalene synthase (FDFT1) affects the response to substance of Etoposide. [40]
Paclitaxel DMLB81S Approved Squalene synthase (FDFT1) affects the response to substance of Paclitaxel. [40]
Mitomycin DMH0ZJE Approved Squalene synthase (FDFT1) affects the response to substance of Mitomycin. [40]
Topotecan DMP6G8T Approved Squalene synthase (FDFT1) affects the response to substance of Topotecan. [40]
Mitoxantrone DMM39BF Approved Squalene synthase (FDFT1) affects the response to substance of Mitoxantrone. [40]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Drug(s)
This DOT Affected the Biotransformations of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
ANW-32821 DMMJOZD Phase 2 Squalene synthase (FDFT1) increases the chemical synthesis of ANW-32821. [33]
------------------------------------------------------------------------------------
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Squalene synthase (FDFT1). [2]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Squalene synthase (FDFT1). [28]
------------------------------------------------------------------------------------
39 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Squalene synthase (FDFT1). [3]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Squalene synthase (FDFT1). [4]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Squalene synthase (FDFT1). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Squalene synthase (FDFT1). [6]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Squalene synthase (FDFT1). [7]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Squalene synthase (FDFT1). [8]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Squalene synthase (FDFT1). [9]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Squalene synthase (FDFT1). [10]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Squalene synthase (FDFT1). [11]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Squalene synthase (FDFT1). [12]
Decitabine DMQL8XJ Approved Decitabine affects the expression of Squalene synthase (FDFT1). [13]
Progesterone DMUY35B Approved Progesterone increases the expression of Squalene synthase (FDFT1). [14]
Isotretinoin DM4QTBN Approved Isotretinoin decreases the expression of Squalene synthase (FDFT1). [15]
Piroxicam DMTK234 Approved Piroxicam decreases the expression of Squalene synthase (FDFT1). [16]
Cocaine DMSOX7I Approved Cocaine increases the expression of Squalene synthase (FDFT1). [17]
Simvastatin DM30SGU Approved Simvastatin increases the expression of Squalene synthase (FDFT1). [18]
Capsaicin DMGMF6V Approved Capsaicin increases the expression of Squalene synthase (FDFT1). [19]
Fluoxetine DM3PD2C Approved Fluoxetine increases the expression of Squalene synthase (FDFT1). [20]
Lovastatin DM9OZWQ Approved Lovastatin increases the activity of Squalene synthase (FDFT1). [21]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Squalene synthase (FDFT1). [22]
Isoflavone DM7U58J Phase 4 Isoflavone increases the expression of Squalene synthase (FDFT1). [23]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Squalene synthase (FDFT1). [11]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the expression of Squalene synthase (FDFT1). [24]
GSK2110183 DMZHB37 Phase 2 GSK2110183 increases the expression of Squalene synthase (FDFT1). [25]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Squalene synthase (FDFT1). [10]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Squalene synthase (FDFT1). [26]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Squalene synthase (FDFT1). [27]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN decreases the expression of Squalene synthase (FDFT1). [29]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Squalene synthase (FDFT1). [30]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Squalene synthase (FDFT1). [31]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of Squalene synthase (FDFT1). [8]
chloropicrin DMSGBQA Investigative chloropicrin increases the expression of Squalene synthase (FDFT1). [32]
Phencyclidine DMQBEYX Investigative Phencyclidine increases the expression of Squalene synthase (FDFT1). [17]
[3H]methyltrienolone DMTSGOW Investigative [3H]methyltrienolone increases the expression of Squalene synthase (FDFT1). [33]
Okadaic acid DM47CO1 Investigative Okadaic acid decreases the expression of Squalene synthase (FDFT1). [34]
PP-242 DM2348V Investigative PP-242 decreases the expression of Squalene synthase (FDFT1). [35]
Rutin DMEHRAJ Investigative Rutin increases the expression of Squalene synthase (FDFT1). [36]
Farnesol DMV2X1B Investigative Farnesol increases the expression of Squalene synthase (FDFT1). [37]
Ganoderic acid A DM42EVG Investigative Ganoderic acid A decreases the expression of Squalene synthase (FDFT1). [38]
------------------------------------------------------------------------------------
⏷ Show the Full List of 39 Drug(s)

References

1 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
2 Integrated 'omics analysis reveals new drug-induced mitochondrial perturbations in human hepatocytes. Toxicol Lett. 2018 Jun 1;289:1-13.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
5 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
8 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
9 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
10 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
11 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
12 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
13 Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS One. 2012;7(12):e53003. doi: 10.1371/journal.pone.0053003. Epub 2012 Dec 27.
14 Coordinate up-regulation of TMEM97 and cholesterol biosynthesis genes in normal ovarian surface epithelial cells treated with progesterone: implications for pathogenesis of ovarian cancer. BMC Cancer. 2007 Dec 11;7:223.
15 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
16 Apoptosis induced by piroxicam plus cisplatin combined treatment is triggered by p21 in mesothelioma. PLoS One. 2011;6(8):e23569.
17 Transcriptional changes common to human cocaine, cannabis and phencyclidine abuse. PLoS One. 2006 Dec 27;1(1):e114. doi: 10.1371/journal.pone.0000114.
18 Resveratrol potentiates effect of simvastatin on inhibition of mevalonate pathway in human endometrial stromal cells. J Clin Endocrinol Metab. 2013 Mar;98(3):E455-62.
19 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
20 Screening autism-associated environmental factors in differentiating human neural progenitors with fractional factorial design-based transcriptomics. Sci Rep. 2023 Jun 29;13(1):10519. doi: 10.1038/s41598-023-37488-0.
21 Pravastatin inhibited the cholesterol synthesis in human hepatoma cell line Hep G2 less than simvastatin and lovastatin, which is reflected in the upregulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase and squalene synthase. Biochem Pharmacol. 1993 Jun 9;45(11):2203-8.
22 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
23 Soy isoflavones exert differential effects on androgen responsive genes in LNCaP human prostate cancer cells. J Nutr. 2007 Apr;137(4):964-72.
24 Resveratrol increases the expression and activity of the low density lipoprotein receptor in hepatocytes by the proteolytic activation of the sterol regulatory element-binding proteins. Atherosclerosis. 2012 Feb;220(2):369-74. doi: 10.1016/j.atherosclerosis.2011.11.006. Epub 2011 Nov 16.
25 Novel ATP-competitive Akt inhibitor afuresertib suppresses the proliferation of malignant pleural mesothelioma cells. Cancer Med. 2017 Nov;6(11):2646-2659. doi: 10.1002/cam4.1179. Epub 2017 Sep 27.
26 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
27 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
28 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
29 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
30 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
31 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
32 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
33 Squalene synthase, a determinant of Raft-associated cholesterol and modulator of cancer cell proliferation. J Biol Chem. 2007 Jun 29;282(26):18777-85. doi: 10.1074/jbc.M611763200. Epub 2007 May 5.
34 Whole genome mRNA transcriptomics analysis reveals different modes of action of the diarrheic shellfish poisons okadaic acid and dinophysis toxin-1 versus azaspiracid-1 in Caco-2 cells. Toxicol In Vitro. 2018 Feb;46:102-112.
35 Marine biogenics in sea spray aerosols interact with the mTOR signaling pathway. Sci Rep. 2019 Jan 24;9(1):675.
36 Combination of metabolomics and network pharmacology analysis to decipher the mechanisms of total flavonoids of Litchi seed against prostate cancer. J Pharm Pharmacol. 2023 Jul 5;75(7):951-968. doi: 10.1093/jpp/rgad035.
37 Farnesol induces fatty acid oxidation and decreases triglyceride accumulation in steatotic HepaRG cells. Toxicol Appl Pharmacol. 2019 Feb 15;365:61-70.
38 Ganoderic Acid A improves high fat diet-induced obesity, lipid accumulation and insulin sensitivity through regulating SREBP pathway. Chem Biol Interact. 2018 Jun 25;290:77-87.
39 cDNA microarray analysis of isogenic paclitaxel- and doxorubicin-resistant breast tumor cell lines reveals distinct drug-specific genetic signatures of resistance. Breast Cancer Res Treat. 2006 Mar;96(1):17-39. doi: 10.1007/s10549-005-9026-6. Epub 2005 Dec 2.
40 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.