General Information of Drug Off-Target (DOT) (ID: OT0RCL85)

DOT Name Leucine-rich repeat and calponin homology domain-containing protein 1 (LRCH1)
Synonyms Calponin homology domain-containing protein 1; Neuronal protein 81; NP81
Gene Name LRCH1
Related Disease
Adenoma ( )
Carcinoma ( )
Chondrosarcoma ( )
Colorectal carcinoma ( )
Nervous system inflammation ( )
Osteoarthritis ( )
Stroke ( )
Multiple sclerosis ( )
UniProt ID
LRCH1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00307 ; PF13855
Sequence
MATPGSEPQPFVPALSVATLHPLHHPHHHHHHHQHHGGTGAPGGAGGGGGGSGGFNLPLN
RGLERALEEAANSGGLNLSARKLKEFPRTAAPGHDLSDTVQADLSKNRLVEVPMELCHFV
SLEILNLYHNCIRVIPEAIVNLQMLTYLNLSRNQLSALPACLCGLPLKVLIASNNKLGSL
PEEIGQLKQLMELDVSCNEITALPQQIGQLKSLRELNVRRNYLKVLPQELVDLSLVKFDF
SCNKVLVIPICFREMKQLQVLLLENNPLQSPPAQICTKGKVHIFKYLSIQACQIKTADSL
YLHTMERPHLHQHVEDGKKDSDSGVGSDNGDKRLSATEPSDEDTVSLNVPMSNIMEEEQI
IKEDSCHRLSPVKGEFHQEFQPEPSLLGDSTNSGEERDQFTDRADGLHSEFMNYKARAED
CEELLRIEEDVHWQTEGIISSSKDQDMDIAMIEQLREAVDLLQDPNGLSTDITERSVLNL
YPMGSAEALELQDSALNGQIQLETSPVCEVQSDLTLQSNGSQYSPNEIRENSPAVSPTTN
STAPFGLKPRSVFLRPQRNLESIDPQFTIRRKMEQMREEKELVEQLRESIEMRLKVSLHE
DLGAALMDGVVLCHLVNHIRPRSVASIHVPSPAVPKLSMAKCRRNVENFLEACRKLGVPE
ADLCSPCDILQLDFRHIRKTVDTLLALGEKAPPPTSALRSRDLIGFCLVHILFIVLVYIT
YHWNALSA
Function Acts as a negative regulator of GTPase CDC42 by sequestering CDC42-guanine exchange factor DOCK8. Probably by preventing CDC42 activation, negatively regulates CD4(+) T-cell migration.

Molecular Interaction Atlas (MIA) of This DOT

8 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Adenoma DIS78ZEV Strong Altered Expression [1]
Carcinoma DISH9F1N Strong Altered Expression [1]
Chondrosarcoma DIS4I7JB Strong Altered Expression [2]
Colorectal carcinoma DIS5PYL0 Strong Altered Expression [1]
Nervous system inflammation DISB3X5A Strong Biomarker [3]
Osteoarthritis DIS05URM Strong Genetic Variation [4]
Stroke DISX6UHX Strong Genetic Variation [5]
Multiple sclerosis DISB2WZI moderate Biomarker [3]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Leucine-rich repeat and calponin homology domain-containing protein 1 (LRCH1). [6]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Leucine-rich repeat and calponin homology domain-containing protein 1 (LRCH1). [14]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Leucine-rich repeat and calponin homology domain-containing protein 1 (LRCH1). [16]
Coumarin DM0N8ZM Investigative Coumarin affects the phosphorylation of Leucine-rich repeat and calponin homology domain-containing protein 1 (LRCH1). [16]
------------------------------------------------------------------------------------
10 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Leucine-rich repeat and calponin homology domain-containing protein 1 (LRCH1). [7]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Leucine-rich repeat and calponin homology domain-containing protein 1 (LRCH1). [8]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Leucine-rich repeat and calponin homology domain-containing protein 1 (LRCH1). [9]
Quercetin DM3NC4M Approved Quercetin increases the expression of Leucine-rich repeat and calponin homology domain-containing protein 1 (LRCH1). [10]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Leucine-rich repeat and calponin homology domain-containing protein 1 (LRCH1). [11]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Leucine-rich repeat and calponin homology domain-containing protein 1 (LRCH1). [12]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Leucine-rich repeat and calponin homology domain-containing protein 1 (LRCH1). [13]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Leucine-rich repeat and calponin homology domain-containing protein 1 (LRCH1). [15]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Leucine-rich repeat and calponin homology domain-containing protein 1 (LRCH1). [17]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Leucine-rich repeat and calponin homology domain-containing protein 1 (LRCH1). [18]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Drug(s)

References

1 Gene-dosage dependent overexpression at the 13q amplicon identifies DIS3 as candidate oncogene in colorectal cancer progression.Genes Chromosomes Cancer. 2014 Apr;53(4):339-48. doi: 10.1002/gcc.22144. Epub 2014 Jan 29.
2 Association between a variation in LRCH1 and knee osteoarthritis: a genome-wide single-nucleotide polymorphism association study using DNA pooling.Arthritis Rheum. 2006 Feb;54(2):524-32. doi: 10.1002/art.21624.
3 LRCH1 interferes with DOCK8-Cdc42-induced T cell migration and ameliorates experimental autoimmune encephalomyelitis.J Exp Med. 2017 Jan;214(1):209-226. doi: 10.1084/jem.20160068.
4 Genetic association analysis of LRCH1 as an osteoarthritis susceptibility locus.Rheumatology (Oxford). 2007 Feb;46(2):250-2. doi: 10.1093/rheumatology/kel265. Epub 2006 Aug 5.
5 Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes.Nat Genet. 2018 Apr;50(4):524-537. doi: 10.1038/s41588-018-0058-3. Epub 2018 Mar 12.
6 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
7 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
8 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
9 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
10 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
11 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
12 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
13 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
14 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
15 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
16 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
17 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
18 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.