General Information of Drug Off-Target (DOT) (ID: OT2CZVRT)

DOT Name Pantothenate kinase 1 (PANK1)
Synonyms hPanK; hPanK1; EC 2.7.1.33; Pantothenic acid kinase 1
Gene Name PANK1
Related Disease
Hallermann-Streiff syndrome ( )
Advanced cancer ( )
Cerebellar ataxia ( )
Dystonia ( )
Hereditary spastic paraplegia 11 ( )
Neurodegeneration with brain iron accumulation ( )
Neurodegeneration with brain iron accumulation 2A ( )
Neurodegeneration with brain iron accumulation 5 ( )
Neuroferritinopathy ( )
Pantothenate kinase-associated neurodegeneration ( )
Staphylococcus infection ( )
Malignant exocrine pancreas neoplasm ( )
Parkinsonian disorder ( )
Spondyloepiphyseal dysplasia with congenital joint dislocations ( )
UniProt ID
PANK1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2I7N; 3SMP
EC Number
2.7.1.33
Pfam ID
PF03630
Sequence
MLKLVGGGGGQDWACSVAGTSLGGEEAAFEVARPGDQGKAGGGSPGWGCAGIPDSAPGAG
VLQAGAVGPARGGQGAEEVGESAGGGEERRVRHPQAPALRLLNRKPQGGSGEIKTPENDL
QRGRLSRGPRTAPPAPGMGDRSGQQERSVPHSPGAPVGTSAAAVNGLLHNGFHPPPVQPP
HVCSRGPVGGSDAAPQRLPLLPELQPQPLLPQHDSPAKKCRLRRRMDSGRKNRPPFPWFG
MDIGGTLVKLVYFEPKDITAEEEQEEVENLKSIRKYLTSNTAYGKTGIRDVHLELKNLTM
CGRKGNLHFIRFPSCAMHRFIQMGSEKNFSSLHTTLCATGGGAFKFEEDFRMIADLQLHK
LDELDCLIQGLLYVDSVGFNGKPECYYFENPTNPELCQKKPYCLDNPYPMLLVNMGSGVS
ILAVYSKDNYKRVTGTSLGGGTFLGLCCLLTGCETFEEALEMAAKGDSTNVDKLVKDIYG
GDYERFGLQGSAVASSFGNMMSKEKRDSISKEDLARATLVTITNNIGSIARMCALNENID
RVVFVGNFLRINMVSMKLLAYAMDFWSKGQLKALFLEHEGYFGAVGALLELFKMTDDK
Function [Isoform 1]: Catalyzes the phosphorylation of pantothenate to generate 4'-phosphopantothenate in the first and rate-determining step of coenzyme A (CoA) synthesis.
Tissue Specificity
.Expressed at high levels in brain, heart, kidney, liver, skeletal muscle and testis.; [Isoform 2]: Detected at much lower levels in kidney, liver, brain and testis and not detected in heart or skeletal muscle.
KEGG Pathway
Pantothe.te and CoA biosynthesis (hsa00770 )
Metabolic pathways (hsa01100 )
Biosynthesis of cofactors (hsa01240 )
Reactome Pathway
Coenzyme A biosynthesis (R-HSA-196783 )
BioCyc Pathway
MetaCyc:HS07852-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

14 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Hallermann-Streiff syndrome DISNT5DL Definitive Biomarker [1]
Advanced cancer DISAT1Z9 Strong Biomarker [2]
Cerebellar ataxia DIS9IRAV Strong Biomarker [3]
Dystonia DISJLFGW Strong Genetic Variation [4]
Hereditary spastic paraplegia 11 DIS8K8V4 Strong Genetic Variation [4]
Neurodegeneration with brain iron accumulation DISRK4DZ Strong Genetic Variation [5]
Neurodegeneration with brain iron accumulation 2A DIS9XEBF Strong Genetic Variation [5]
Neurodegeneration with brain iron accumulation 5 DISW9SFJ Strong Genetic Variation [4]
Neuroferritinopathy DIS0E4F3 Strong Biomarker [4]
Pantothenate kinase-associated neurodegeneration DIS50V55 Strong Genetic Variation [6]
Staphylococcus infection DISY8WGS Strong Biomarker [7]
Malignant exocrine pancreas neoplasm DISIA6JF moderate Genetic Variation [8]
Parkinsonian disorder DISHGY45 Limited Biomarker [4]
Spondyloepiphyseal dysplasia with congenital joint dislocations DISR9PTZ Limited Genetic Variation [9]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Pantothenate kinase 1 (PANK1). [10]
Arsenic DMTL2Y1 Approved Arsenic increases the methylation of Pantothenate kinase 1 (PANK1). [17]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of Pantothenate kinase 1 (PANK1). [28]
------------------------------------------------------------------------------------
21 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Pantothenate kinase 1 (PANK1). [11]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Pantothenate kinase 1 (PANK1). [12]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Pantothenate kinase 1 (PANK1). [13]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Pantothenate kinase 1 (PANK1). [14]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Pantothenate kinase 1 (PANK1). [15]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Pantothenate kinase 1 (PANK1). [11]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Pantothenate kinase 1 (PANK1). [16]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Pantothenate kinase 1 (PANK1). [18]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Pantothenate kinase 1 (PANK1). [19]
Fluorouracil DMUM7HZ Approved Fluorouracil increases the expression of Pantothenate kinase 1 (PANK1). [20]
Azathioprine DMMZSXQ Approved Azathioprine decreases the expression of Pantothenate kinase 1 (PANK1). [21]
Indomethacin DMSC4A7 Approved Indomethacin decreases the expression of Pantothenate kinase 1 (PANK1). [22]
Cidofovir DMA13GD Approved Cidofovir decreases the expression of Pantothenate kinase 1 (PANK1). [15]
Fenofibrate DMFKXDY Approved Fenofibrate increases the expression of Pantothenate kinase 1 (PANK1). [23]
Ifosfamide DMCT3I8 Approved Ifosfamide decreases the expression of Pantothenate kinase 1 (PANK1). [15]
Ibuprofen DM8VCBE Approved Ibuprofen increases the expression of Pantothenate kinase 1 (PANK1). [15]
Adefovir dipivoxil DMMAWY1 Approved Adefovir dipivoxil decreases the expression of Pantothenate kinase 1 (PANK1). [15]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Pantothenate kinase 1 (PANK1). [24]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Pantothenate kinase 1 (PANK1). [25]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Pantothenate kinase 1 (PANK1). [26]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Pantothenate kinase 1 (PANK1). [27]
------------------------------------------------------------------------------------
⏷ Show the Full List of 21 Drug(s)

References

1 A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nat Genet. 2001 Aug;28(4):345-9. doi: 10.1038/ng572.
2 Ki-ras mutations as a prognostic factor in extrahepatic bile system cancer. PANK-ras I Project Investigators.J Clin Oncol. 1995 Jul;13(7):1679-86. doi: 10.1200/JCO.1995.13.7.1679.
3 Deep brain stimulation as a mode of treatment of early onset pantothenate kinase-associated neurodegeneration.Eur J Paediatr Neurol. 2009 Jan;13(1):61-4. doi: 10.1016/j.ejpn.2008.01.006. Epub 2008 May 6.
4 Rare causes of dystonia parkinsonism.Curr Neurol Neurosci Rep. 2010 Nov;10(6):431-9. doi: 10.1007/s11910-010-0136-0.
5 Widespread Lewy body and tau accumulation in childhood and adult onset dystonia-parkinsonism cases with PLA2G6 mutations.Neurobiol Aging. 2012 Apr;33(4):814-23. doi: 10.1016/j.neurobiolaging.2010.05.009. Epub 2010 Jul 21.
6 A therapeutic approach to pantothenate kinase associated neurodegeneration.Nat Commun. 2018 Oct 23;9(1):4399. doi: 10.1038/s41467-018-06703-2.
7 Inhibitors of pantothenate kinase: novel antibiotics for staphylococcal infections.Antimicrob Agents Chemother. 2003 Jun;47(6):2051-5. doi: 10.1128/AAC.47.6.2051-2055.2003.
8 Ki-ras mutations in exocrine pancreatic cancer: association with clinico-pathological characteristics and with tobacco and alcohol consumption. PANK-ras I Project Investigators.Int J Cancer. 1997 Mar 17;70(6):661-7. doi: 10.1002/(sici)1097-0215(19970317)70:6<661::aid-ijc6>3.0.co;2-t.
9 Familial pediatric rapidly progressive extrapyramidal syndrome: is it Hallervorden-Spatz disease?.Pediatr Neurol. 2003 Aug;29(2):170-2. doi: 10.1016/s0887-8994(03)00231-5.
10 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
11 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
12 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
13 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
14 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
15 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
16 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
17 Effect of prenatal arsenic exposure on DNA methylation and leukocyte subpopulations in cord blood. Epigenetics. 2014 May;9(5):774-82. doi: 10.4161/epi.28153. Epub 2014 Feb 13.
18 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
19 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
20 Transcriptional profiling of MCF7 breast cancer cells in response to 5-Fluorouracil: relationship with cell cycle changes and apoptosis, and identification of novel targets of p53. Int J Cancer. 2006 Sep 1;119(5):1164-75.
21 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
22 Mechanisms of indomethacin-induced alterations in the choline phospholipid metabolism of breast cancer cells. Neoplasia. 2006 Sep;8(9):758-71.
23 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
24 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
25 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
26 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
27 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
28 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.