General Information of Drug Off-Target (DOT) (ID: OT6FCHME)

DOT Name Serine/threonine-protein kinase SIK1 (SIK1)
Synonyms EC 2.7.11.1; Salt-inducible kinase 1; SIK-1; Serine/threonine-protein kinase SNF1-like kinase 1; Serine/threonine-protein kinase SNF1LK
Gene Name SIK1
Related Disease
Developmental and epileptic encephalopathy, 30 ( )
Early myoclonic encephalopathy ( )
Infantile spasm ( )
West syndrome ( )
UniProt ID
SIK1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
2.7.11.1
Pfam ID
PF00069
Sequence
MVIMSEFSADPAGQGQGQQKPLRVGFYDIERTLGKGNFAVVKLARHRVTKTQVAIKIIDK
TRLDSSNLEKIYREVQLMKLLNHPHIIKLYQVMETKDMLYIVTEFAKNGEMFDYLTSNGH
LSENEARKKFWQILSAVEYCHDHHIVHRDLKTENLLLDGNMDIKLADFGFGNFYKSGEPL
STWCGSPPYAAPEVFEGKEYEGPQLDIWSLGVVLYVLVCGSLPFDGPNLPTLRQRVLEGR
FRIPFFMSQDCESLIRRMLVVDPARRITIAQIRQHRWMRAEPCLPGPACPAFSAHSYTSN
LGDYDEQALGIMQTLGVDRQRTVESLQNSSYNHFAAIYYLLLERLKEYRNAQCARPGPAR
QPRPRSSDLSGLEVPQEGLSTDPFRPALLCPQPQTLVQSVLQAEMDCELQSSLQWPLFFP
VDASCSGVFRPRPVSPSSLLDTAISEEARQGPGLEEEQDTQESLPSSTGRRHTLAEVSTR
LSPLTAPCIVVSPSTTASPAEGTSSDSCLTFSASKSPAGLSGTPATQGLLGACSPVRLAS
PFLGSQSATPVLQAQGGLGGAVLLPVSFQEGRRASDTSLTQGLKAFRQQLRKTTRTKGFL
GLNKIKGLARQVCQAPASRASRGGLSPFHAPAQSPGLHGGAAGSREGWSLLEEVLEQQRL
LQLQHHPAAAPGCSQAPQPAPAPFVIAPCDGPGAAPLPSTLLTSGLPLLPPPLLQTGASP
VASAAQLLDTHLHIGTGPTALPAVPPPRLARLAPGCEPLGLLQGDCEMEDLMPCSLGTFV
LVQ
Function
Serine/threonine-protein kinase involved in various processes such as cell cycle regulation, gluconeogenesis and lipogenesis regulation, muscle growth and differentiation and tumor suppression. Phosphorylates HDAC4, HDAC5, PPME1, SREBF1, CRTC1/TORC1. Inhibits CREB activity by phosphorylating and inhibiting activity of TORCs, the CREB-specific coactivators, like CRTC2/TORC2 and CRTC3/TORC3 in response to cAMP signaling. Acts as a tumor suppressor and plays a key role in p53/TP53-dependent anoikis, a type of apoptosis triggered by cell detachment: required for phosphorylation of p53/TP53 in response to loss of adhesion and is able to suppress metastasis. Part of a sodium-sensing signaling network, probably by mediating phosphorylation of PPME1: following increases in intracellular sodium, SIK1 is activated by CaMK1 and phosphorylates PPME1 subunit of protein phosphatase 2A (PP2A), leading to dephosphorylation of sodium/potassium-transporting ATPase ATP1A1 and subsequent increase activity of ATP1A1. Acts as a regulator of muscle cells by phosphorylating and inhibiting class II histone deacetylases HDAC4 and HDAC5, leading to promote expression of MEF2 target genes in myocytes. Also required during cardiomyogenesis by regulating the exit of cardiomyoblasts from the cell cycle via down-regulation of CDKN1C/p57Kip2. Acts as a regulator of hepatic gluconeogenesis by phosphorylating and repressing the CREB-specific coactivators CRTC1/TORC1 and CRTC2/TORC2, leading to inhibit CREB activity. Also regulates hepatic lipogenesis by phosphorylating and inhibiting SREBF1. In concert with CRTC1/TORC1, regulates the light-induced entrainment of the circadian clock by attenuating PER1 induction; represses CREB-mediated transcription of PER1 by phosphorylating and deactivating CRTC1/TORC1.
KEGG Pathway
Glucagon sig.ling pathway (hsa04922 )
Reactome Pathway
Circadian Clock (R-HSA-400253 )

Molecular Interaction Atlas (MIA) of This DOT

4 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Developmental and epileptic encephalopathy, 30 DIS9QRKG Strong Autosomal dominant [1]
Early myoclonic encephalopathy DIS1YXVQ Supportive Autosomal dominant [1]
Infantile spasm DISZSKDG Supportive Autosomal dominant [1]
West syndrome DISLIAU9 Supportive Autosomal dominant [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
30 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Serine/threonine-protein kinase SIK1 (SIK1). [2]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Serine/threonine-protein kinase SIK1 (SIK1). [3]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Serine/threonine-protein kinase SIK1 (SIK1). [4]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Serine/threonine-protein kinase SIK1 (SIK1). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Serine/threonine-protein kinase SIK1 (SIK1). [6]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Serine/threonine-protein kinase SIK1 (SIK1). [7]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Serine/threonine-protein kinase SIK1 (SIK1). [8]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Serine/threonine-protein kinase SIK1 (SIK1). [9]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Serine/threonine-protein kinase SIK1 (SIK1). [10]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Serine/threonine-protein kinase SIK1 (SIK1). [11]
Menadione DMSJDTY Approved Menadione affects the expression of Serine/threonine-protein kinase SIK1 (SIK1). [8]
Hydroquinone DM6AVR4 Approved Hydroquinone decreases the expression of Serine/threonine-protein kinase SIK1 (SIK1). [12]
Rosiglitazone DMILWZR Approved Rosiglitazone increases the expression of Serine/threonine-protein kinase SIK1 (SIK1). [13]
Amphotericin B DMTAJQE Approved Amphotericin B increases the expression of Serine/threonine-protein kinase SIK1 (SIK1). [14]
Cidofovir DMA13GD Approved Cidofovir affects the expression of Serine/threonine-protein kinase SIK1 (SIK1). [13]
Melphalan DMOLNHF Approved Melphalan increases the expression of Serine/threonine-protein kinase SIK1 (SIK1). [15]
Fenofibrate DMFKXDY Approved Fenofibrate increases the expression of Serine/threonine-protein kinase SIK1 (SIK1). [13]
Ibuprofen DM8VCBE Approved Ibuprofen increases the expression of Serine/threonine-protein kinase SIK1 (SIK1). [13]
Capecitabine DMTS85L Approved Capecitabine decreases the expression of Serine/threonine-protein kinase SIK1 (SIK1). [16]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Serine/threonine-protein kinase SIK1 (SIK1). [17]
Phenol DM1QSM3 Phase 2/3 Phenol increases the expression of Serine/threonine-protein kinase SIK1 (SIK1). [18]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Serine/threonine-protein kinase SIK1 (SIK1). [20]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Serine/threonine-protein kinase SIK1 (SIK1). [21]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Serine/threonine-protein kinase SIK1 (SIK1). [22]
Torcetrapib DMDHYM7 Discontinued in Phase 2 Torcetrapib increases the expression of Serine/threonine-protein kinase SIK1 (SIK1). [23]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Serine/threonine-protein kinase SIK1 (SIK1). [24]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Serine/threonine-protein kinase SIK1 (SIK1). [25]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Serine/threonine-protein kinase SIK1 (SIK1). [26]
Nickel chloride DMI12Y8 Investigative Nickel chloride increases the expression of Serine/threonine-protein kinase SIK1 (SIK1). [18]
2-AMINO-1-METHYL-6-PHENYLIMIDAZO[4,5-B]PYRIDINE DMNQL17 Investigative 2-AMINO-1-METHYL-6-PHENYLIMIDAZO[4,5-B]PYRIDINE decreases the expression of Serine/threonine-protein kinase SIK1 (SIK1). [28]
------------------------------------------------------------------------------------
⏷ Show the Full List of 30 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Serine/threonine-protein kinase SIK1 (SIK1). [19]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of Serine/threonine-protein kinase SIK1 (SIK1). [27]
------------------------------------------------------------------------------------

References

1 De novo mutations in SIK1 cause a spectrum of developmental epilepsies. Am J Hum Genet. 2015 Apr 2;96(4):682-90. doi: 10.1016/j.ajhg.2015.02.013.
2 Design principles of concentration-dependent transcriptome deviations in drug-exposed differentiating stem cells. Chem Res Toxicol. 2014 Mar 17;27(3):408-20.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
5 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
8 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
9 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
10 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
11 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
12 Keratinocyte-derived IL-36gama plays a role in hydroquinone-induced chemical leukoderma through inhibition of melanogenesis in human epidermal melanocytes. Arch Toxicol. 2019 Aug;93(8):2307-2320.
13 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
14 Differential expression of microRNAs and their predicted targets in renal cells exposed to amphotericin B and its complex with copper (II) ions. Toxicol Mech Methods. 2017 Sep;27(7):537-543. doi: 10.1080/15376516.2017.1333554. Epub 2017 Jun 8.
15 Bone marrow osteoblast damage by chemotherapeutic agents. PLoS One. 2012;7(2):e30758. doi: 10.1371/journal.pone.0030758. Epub 2012 Feb 17.
16 Gene expression responses reflecting 5-FU-induced toxicity: Comparison between patient colon tissue and 3D human colon organoids. Toxicol Lett. 2022 Dec 1;371:17-24. doi: 10.1016/j.toxlet.2022.09.013. Epub 2022 Sep 29.
17 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
18 Classification of heavy-metal toxicity by human DNA microarray analysis. Environ Sci Technol. 2007 May 15;41(10):3769-74.
19 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
20 Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells. J Biol Chem. 2012 Dec 14;287(51):43137-55.
21 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
22 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
23 Clarifying off-target effects for torcetrapib using network pharmacology and reverse docking approach. BMC Syst Biol. 2012 Dec 10;6:152.
24 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
25 Cystathionine metabolic enzymes play a role in the inflammation resolution of human keratinocytes in response to sub-cytotoxic formaldehyde exposure. Toxicol Appl Pharmacol. 2016 Nov 1;310:185-194.
26 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
27 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
28 Preferential induction of the AhR gene battery in HepaRG cells after a single or repeated exposure to heterocyclic aromatic amines. Toxicol Appl Pharmacol. 2010 Nov 15;249(1):91-100.