General Information of Drug Off-Target (DOT) (ID: OTC8R6EH)

DOT Name Stomatin (STOM)
Synonyms Erythrocyte band 7 integral membrane protein; Erythrocyte membrane protein band 7.2; Protein 7.2b
Gene Name STOM
Related Disease
Carcinoma of esophagus ( )
Cataract ( )
Cervical cancer ( )
Cervical carcinoma ( )
Childhood onset GLUT1 deficiency syndrome 2 ( )
Cleft lip/palate ( )
Colorectal carcinoma ( )
Dehydrated hereditary stomatocytosis ( )
Gallbladder cancer ( )
Gallbladder carcinoma ( )
Gastric adenocarcinoma ( )
GLUT1 deficiency syndrome ( )
Movement disorder ( )
Nephrotic syndrome ( )
Non-small-cell lung cancer ( )
Osteoporosis ( )
Overhydrated hereditary stomatocytosis ( )
Recessive X-linked ichthyosis ( )
Sarcoma ( )
Soft tissue sarcoma ( )
Advanced cancer ( )
Cryohydrocytosis ( )
Neoplasm ( )
UniProt ID
STOM_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
7WH3
Pfam ID
PF01145
Sequence
MAEKRHTRDSEAQRLPDSFKDSPSKGLGPCGWILVAFSFLFTVITFPISIWMCIKIIKEY
ERAIIFRLGRILQGGAKGPGLFFILPCTDSFIKVDMRTISFDIPPQEILTKDSVTISVDG
VVYYRVQNATLAVANITNADSATRLLAQTTLRNVLGTKNLSQILSDREEIAHNMQSTLDD
ATDAWGIKVERVEIKDVKLPVQLQRAMAAEAEASREARAKVIAAEGEMNASRALKEASMV
ITESPAALQLRYLQTLTTIAAEKNSTIVFPLPIDMLQGIIGAKHSHLG
Function Regulates ion channel activity and transmembrane ion transport. Regulates ASIC2 and ASIC3 channel activity.
Tissue Specificity Detected in erythrocytes (at protein level). Widely expressed.
Reactome Pathway
Neutrophil degranulation (R-HSA-6798695 )
RHOA GTPase cycle (R-HSA-8980692 )
RHOB GTPase cycle (R-HSA-9013026 )
RHOC GTPase cycle (R-HSA-9013106 )
CDC42 GTPase cycle (R-HSA-9013148 )
RHOQ GTPase cycle (R-HSA-9013406 )
RHOH GTPase cycle (R-HSA-9013407 )
RHOJ GTPase cycle (R-HSA-9013409 )
Stimuli-sensing channels (R-HSA-2672351 )

Molecular Interaction Atlas (MIA) of This DOT

23 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Carcinoma of esophagus DISS6G4D Strong Biomarker [1]
Cataract DISUD7SL Strong Genetic Variation [2]
Cervical cancer DISFSHPF Strong Biomarker [3]
Cervical carcinoma DIST4S00 Strong Biomarker [3]
Childhood onset GLUT1 deficiency syndrome 2 DISXPRXM Strong Biomarker [4]
Cleft lip/palate DIS14IG3 Strong Genetic Variation [5]
Colorectal carcinoma DIS5PYL0 Strong Altered Expression [6]
Dehydrated hereditary stomatocytosis DISGQT6H Strong Genetic Variation [7]
Gallbladder cancer DISXJUAF Strong Altered Expression [6]
Gallbladder carcinoma DISD6ACL Strong Altered Expression [6]
Gastric adenocarcinoma DISWWLTC Strong Altered Expression [8]
GLUT1 deficiency syndrome DIS8OXEB Strong Genetic Variation [2]
Movement disorder DISOJJ2D Strong Genetic Variation [2]
Nephrotic syndrome DISSPSC2 Strong Biomarker [9]
Non-small-cell lung cancer DIS5Y6R9 Strong Altered Expression [10]
Osteoporosis DISF2JE0 Strong Biomarker [11]
Overhydrated hereditary stomatocytosis DIS6TF7I Strong Altered Expression [12]
Recessive X-linked ichthyosis DISZY56W Strong Biomarker [10]
Sarcoma DISZDG3U Strong Biomarker [10]
Soft tissue sarcoma DISSN8XB Strong Biomarker [10]
Advanced cancer DISAT1Z9 Disputed Biomarker [13]
Cryohydrocytosis DISMQHL3 Limited Genetic Variation [14]
Neoplasm DISZKGEW Limited Biomarker [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 23 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
22 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Stomatin (STOM). [16]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Stomatin (STOM). [17]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Stomatin (STOM). [18]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Stomatin (STOM). [19]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Stomatin (STOM). [20]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Stomatin (STOM). [21]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Stomatin (STOM). [22]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Stomatin (STOM). [23]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Stomatin (STOM). [24]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Stomatin (STOM). [25]
Fluorouracil DMUM7HZ Approved Fluorouracil decreases the expression of Stomatin (STOM). [26]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Stomatin (STOM). [27]
Cytarabine DMZD5QR Approved Cytarabine decreases the expression of Stomatin (STOM). [28]
Etoposide DMNH3PG Approved Etoposide increases the expression of Stomatin (STOM). [29]
Cyclophosphamide DM4O2Z7 Approved Cyclophosphamide increases the expression of Stomatin (STOM). [29]
Dactinomycin DM2YGNW Approved Dactinomycin increases the expression of Stomatin (STOM). [29]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of Stomatin (STOM). [30]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Stomatin (STOM). [31]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Stomatin (STOM). [32]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Stomatin (STOM). [33]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Stomatin (STOM). [34]
OXYQUINOLINE DMZVS9Y Investigative OXYQUINOLINE increases the expression of Stomatin (STOM). [35]
------------------------------------------------------------------------------------
⏷ Show the Full List of 22 Drug(s)

References

1 miRNA-1207-5p is associated with cancer progression by targeting stomatin-like protein 2 in esophageal carcinoma.Int J Oncol. 2015 May;46(5):2163-71. doi: 10.3892/ijo.2015.2900. Epub 2015 Feb 19.
2 Stomatin-deficient cryohydrocytosis results from mutations in SLC2A1: a novel form of GLUT1 deficiency syndrome. Blood. 2011 Nov 10;118(19):5267-77. doi: 10.1182/blood-2010-12-326645. Epub 2011 Jul 26.
3 Stomatin-like protein 2 expression is associated with clinical survival in patients with cervical cancer.Int J Clin Exp Pathol. 2015 Feb 1;8(2):1804-9. eCollection 2015.
4 Glucide metabolism disorders (excluding glycogen myopathies).Handb Clin Neurol. 2013;113:1689-94. doi: 10.1016/B978-0-444-59565-2.00036-8.
5 Follow-up association studies of chromosome region 9q and nonsyndromic cleft lip/palate.Am J Med Genet A. 2010 Jul;152A(7):1701-10. doi: 10.1002/ajmg.a.33482.
6 Enhanced SLP-2 promotes invasion and metastasis by regulating Wnt/-catenin signal pathway in colorectal cancer and predicts poor prognosis.Pathol Res Pract. 2019 Jan;215(1):57-67. doi: 10.1016/j.prp.2018.10.018. Epub 2018 Oct 24.
7 Exclusion of the stomatin, alpha-adducin and beta-adducin loci in a large kindred with dehydrated hereditary stomatocytosis.Am J Hematol. 1999 Jan;60(1):72-4. doi: 10.1002/(sici)1096-8652(199901)60:1<72::aid-ajh13>3.0.co;2-8.
8 Increased expression of stomatin-like protein 2 (STOML2) predicts decreased survival in gastric adenocarcinoma: a retrospective study.Med Oncol. 2014 Jan;31(1):763. doi: 10.1007/s12032-013-0763-9. Epub 2013 Nov 21.
9 The curious genomic path from leaky red cell to nephrotic kidney.Nephron Physiol. 2003;93(2):p29-33. doi: 10.1159/000068527.
10 Simultaneous expression of flotillin-1, flotillin-2, stomatin and caveolin-1 in non-small cell lung cancer and soft tissue sarcomas.BMC Cancer. 2014 Feb 17;14:100. doi: 10.1186/1471-2407-14-100.
11 Lipid raft-associated stomatin enhances cell fusion.FASEB J. 2017 Jan;31(1):47-59. doi: 10.1096/fj.201600643R. Epub 2016 Sep 23.
12 The "stomatin" gene and protein in overhydrated hereditary stomatocytosis.Blood. 2003 Sep 15;102(6):2268-77. doi: 10.1182/blood-2002-06-1705. Epub 2003 May 15.
13 Stomatin-like protein 2 overexpression in papillary thyroid carcinoma is significantly associated with high-risk clinicopathological parameters and BRAFV600E mutation.APMIS. 2016 Apr;124(4):271-7. doi: 10.1111/apm.12505. Epub 2016 Jan 11.
14 The Molecular Basis for Altered Cation Permeability in Hereditary Stomatocytic Human Red Blood Cells.Front Physiol. 2018 Apr 16;9:367. doi: 10.3389/fphys.2018.00367. eCollection 2018.
15 Stomatin-like protein 2 is associated with the clinicopathological features of human papillary thyroid cancer and is regulated by TGF- in thyroid cancer cells.Oncol Rep. 2014 Jan;31(1):153-60. doi: 10.3892/or.2013.2833. Epub 2013 Nov 4.
16 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
17 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
18 Retinoic acid receptor alpha amplifications and retinoic acid sensitivity in breast cancers. Clin Breast Cancer. 2013 Oct;13(5):401-8.
19 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
20 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
21 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
22 High-throughput ectopic expression screen for tamoxifen resistance identifies an atypical kinase that blocks autophagy. Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):2058-63.
23 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
24 Gene microarray analysis of human renal cell carcinoma: the effects of HDAC inhibition and retinoid treatment. Cancer Biol Ther. 2008 Oct;7(10):1607-18.
25 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
26 Evaluation of developmental toxicity using undifferentiated human embryonic stem cells. J Appl Toxicol. 2015 Feb;35(2):205-18.
27 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
28 Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br J Pharmacol. 2011 Apr;162(8):1743-56.
29 Genomic profiling uncovers a molecular pattern for toxicological characterization of mutagens and promutagens in vitro. Toxicol Sci. 2011 Jul;122(1):185-97.
30 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
31 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
32 Environmental pollutant induced cellular injury is reflected in exosomes from placental explants. Placenta. 2020 Jan 1;89:42-49. doi: 10.1016/j.placenta.2019.10.008. Epub 2019 Oct 17.
33 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
34 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
35 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.