General Information of Drug Off-Target (DOT) (ID: OTE8TXA8)

DOT Name Eukaryotic translation initiation factor 4B (EIF4B)
Synonyms eIF-4B
Gene Name EIF4B
Related Disease
Acute monocytic leukemia ( )
Acute myelogenous leukaemia ( )
B-cell lymphoma ( )
Breast cancer ( )
Breast carcinoma ( )
Chronic hepatitis B virus infection ( )
Clear cell renal carcinoma ( )
Colon cancer ( )
Colon carcinoma ( )
Estrogen-receptor positive breast cancer ( )
Hepatocellular carcinoma ( )
Major depressive disorder ( )
Renal cell carcinoma ( )
Skin cancer ( )
Squamous cell carcinoma ( )
Triple negative breast cancer ( )
Neoplasm ( )
UniProt ID
IF4B_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1WI8; 2J76; 6FEC
Pfam ID
PF00076
Sequence
MAASAKKKNKKGKTISLTDFLAEDGGTGGGSTYVSKPVSWADETDDLEGDVSTTWHSNDD
DVYRAPPIDRSILPTAPRAAREPNIDRSRLPKSPPYTAFLGNLPYDVTEESIKEFFRGLN
ISAVRLPREPSNPERLKGFGYAEFEDLDSLLSALSLNEESLGNRRIRVDVADQAQDKDRD
DRSFGRDRNRDSDKTDTDWRARPATDSFDDYPPRRGDDSFGDKYRDRYDSDRYRDGYRDG
YRDGPRRDMDRYGGRDRYDDRGSRDYDRGYDSRIGSGRRAFGSGYRRDDDYRGGGDRYED
RYDRRDDRSWSSRDDYSRDDYRRDDRGPPQRPKLNLKPRSTPKEDDSSASTSQSTRAASI
FGGAKPVDTAAREREVEERLQKEQEKLQRQLDEPKLERRPRERHPSWRSEETQERERSRT
GSESSQTGTSTTSSRNARRRESEKSLENETLNKEEDCHSPTSKPPKPDQPLKVMPAPPPK
ENAWVKRSSNPPARSQSSDTEQQSPTSGGGKVAPAQPSEEGPGRKDENKVDGMNAPKGQT
GNSSRGPGDGGNRDHWKESDRKDGKKDQDSRSAPEPKKPEENPASKFSSASKYAALSVDG
EDENEGEDYAE
Function
Required for the binding of mRNA to ribosomes. Functions in close association with EIF4-F and EIF4-A. Binds near the 5'-terminal cap of mRNA in presence of EIF-4F and ATP. Promotes the ATPase activity and the ATP-dependent RNA unwinding activity of both EIF4-A and EIF4-F.
KEGG Pathway
mTOR sig.ling pathway (hsa04150 )
PI3K-Akt sig.ling pathway (hsa04151 )
Proteoglycans in cancer (hsa05205 )
Reactome Pathway
mTORC1-mediated signalling (R-HSA-166208 )
Deadenylation of mRNA (R-HSA-429947 )
Translation initiation complex formation (R-HSA-72649 )
Activation of the mRNA upon binding of the cap-binding complex and eIFs, and subsequent binding to 43S (R-HSA-72662 )
Ribosomal scanning and start codon recognition (R-HSA-72702 )
GTP hydrolysis and joining of the 60S ribosomal subunit (R-HSA-72706 )
M-decay (R-HSA-9820841 )
Z-decay (R-HSA-9820865 )
L13a-mediated translational silencing of Ceruloplasmin expression (R-HSA-156827 )

Molecular Interaction Atlas (MIA) of This DOT

17 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Acute monocytic leukemia DIS28NEL Strong Biomarker [1]
Acute myelogenous leukaemia DISCSPTN Strong Biomarker [1]
B-cell lymphoma DISIH1YQ Strong Biomarker [2]
Breast cancer DIS7DPX1 Strong Altered Expression [3]
Breast carcinoma DIS2UE88 Strong Altered Expression [3]
Chronic hepatitis B virus infection DISHL4NT Strong Altered Expression [4]
Clear cell renal carcinoma DISBXRFJ Strong Biomarker [5]
Colon cancer DISVC52G Strong Altered Expression [6]
Colon carcinoma DISJYKUO Strong Altered Expression [6]
Estrogen-receptor positive breast cancer DIS1H502 Strong Biomarker [3]
Hepatocellular carcinoma DIS0J828 Strong Altered Expression [4]
Major depressive disorder DIS4CL3X Strong Biomarker [7]
Renal cell carcinoma DISQZ2X8 Strong Biomarker [5]
Skin cancer DISTM18U Strong Altered Expression [6]
Squamous cell carcinoma DISQVIFL moderate Altered Expression [8]
Triple negative breast cancer DISAMG6N moderate Altered Expression [9]
Neoplasm DISZKGEW Limited Posttranslational Modification [10]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
16 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Eukaryotic translation initiation factor 4B (EIF4B). [11]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Eukaryotic translation initiation factor 4B (EIF4B). [12]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Eukaryotic translation initiation factor 4B (EIF4B). [13]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Eukaryotic translation initiation factor 4B (EIF4B). [14]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Eukaryotic translation initiation factor 4B (EIF4B). [16]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Eukaryotic translation initiation factor 4B (EIF4B). [17]
Menadione DMSJDTY Approved Menadione affects the expression of Eukaryotic translation initiation factor 4B (EIF4B). [18]
Imatinib DM7RJXL Approved Imatinib decreases the expression of Eukaryotic translation initiation factor 4B (EIF4B). [19]
Tamibarotene DM3G74J Phase 3 Tamibarotene decreases the expression of Eukaryotic translation initiation factor 4B (EIF4B). [12]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Eukaryotic translation initiation factor 4B (EIF4B). [24]
PMID28870136-Compound-48 DMPIM9L Patented PMID28870136-Compound-48 increases the expression of Eukaryotic translation initiation factor 4B (EIF4B). [26]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Eukaryotic translation initiation factor 4B (EIF4B). [27]
chloropicrin DMSGBQA Investigative chloropicrin affects the expression of Eukaryotic translation initiation factor 4B (EIF4B). [28]
Deguelin DMXT7WG Investigative Deguelin increases the expression of Eukaryotic translation initiation factor 4B (EIF4B). [29]
AHPN DM8G6O4 Investigative AHPN decreases the expression of Eukaryotic translation initiation factor 4B (EIF4B). [31]
PP-242 DM2348V Investigative PP-242 increases the expression of Eukaryotic translation initiation factor 4B (EIF4B). [33]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Drug(s)
9 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Cisplatin DMRHGI9 Approved Cisplatin increases the phosphorylation of Eukaryotic translation initiation factor 4B (EIF4B). [15]
Resveratrol DM3RWXL Phase 3 Resveratrol decreases the phosphorylation of Eukaryotic translation initiation factor 4B (EIF4B). [20]
GDC0941 DM1YAK6 Phase 2 GDC0941 decreases the phosphorylation of Eukaryotic translation initiation factor 4B (EIF4B). [22]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Eukaryotic translation initiation factor 4B (EIF4B). [23]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Eukaryotic translation initiation factor 4B (EIF4B). [25]
Coumarin DM0N8ZM Investigative Coumarin affects the phosphorylation of Eukaryotic translation initiation factor 4B (EIF4B). [25]
Hexadecanoic acid DMWUXDZ Investigative Hexadecanoic acid decreases the phosphorylation of Eukaryotic translation initiation factor 4B (EIF4B). [30]
Rapamycin Immunosuppressant Drug DM678IB Investigative Rapamycin Immunosuppressant Drug decreases the phosphorylation of Eukaryotic translation initiation factor 4B (EIF4B). [32]
U0126 DM31OGF Investigative U0126 decreases the phosphorylation of Eukaryotic translation initiation factor 4B (EIF4B). [22]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Drug(s)
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
DNCB DMDTVYC Phase 2 DNCB affects the binding of Eukaryotic translation initiation factor 4B (EIF4B). [21]
------------------------------------------------------------------------------------

References

1 FLT3-ITD Activates RSK1 to Enhance Proliferation and Survival of AML Cells by Activating mTORC1 and eIF4B Cooperatively with PIM or PI3K and by Inhibiting Bad and BIM.Cancers (Basel). 2019 Nov 20;11(12):1827. doi: 10.3390/cancers11121827.
2 Fatty Acid Synthase induced S6Kinase facilitates USP11-eIF4B complex formation for sustained oncogenic translation in DLBCL.Nat Commun. 2018 Feb 26;9(1):829. doi: 10.1038/s41467-018-03028-y.
3 The malignant phenotype in breast cancer is driven by eIF4A1-mediated changes in the translational landscape.Cell Death Dis. 2015 Jan 22;6(1):e1603. doi: 10.1038/cddis.2014.542.
4 New liver cancer biomarkers: PI3K/AKT/mTOR pathway members and eukaryotic translation initiation factors.Eur J Cancer. 2017 Sep;83:56-70. doi: 10.1016/j.ejca.2017.06.003. Epub 2017 Jul 14.
5 Hypoxic 3D in vitro culture models reveal distinct resistance processes to TKIs in renal cancer cells.Cell Biosci. 2017 Dec 16;7:71. doi: 10.1186/s13578-017-0197-8. eCollection 2017.
6 Pulsed SILAC-based proteomic analysis unveils hypoxia- and serum starvation-induced de novo protein synthesis with PHD finger protein 14 (PHF14) as a hypoxia sensitive epigenetic regulator in cell cycle progression.Oncotarget. 2019 Mar 15;10(22):2136-2150. doi: 10.18632/oncotarget.26669. eCollection 2019 Mar 15.
7 The mTOR signaling pathway in the prefrontal cortex is compromised in major depressive disorder.Prog Neuropsychopharmacol Biol Psychiatry. 2011 Aug 15;35(7):1774-9. doi: 10.1016/j.pnpbp.2011.05.010. Epub 2011 May 23.
8 RSK activation of translation factor eIF4B drives abnormal increases of laminin 2 and MYC protein during neoplastic progression to squamous cell carcinoma.PLoS One. 2013 Oct 28;8(10):e78979. doi: 10.1371/journal.pone.0078979. eCollection 2013.
9 RSK-mediated down-regulation of PDCD4 is required for proliferation, survival, and migration in a model of triple-negative breast cancer.Oncotarget. 2016 May 10;7(19):27567-83. doi: 10.18632/oncotarget.8375.
10 eIF4B is a convergent target and critical effector of oncogenic Pim and PI3K/Akt/mTOR signaling pathways in Abl transformants.Oncotarget. 2016 Mar 1;7(9):10073-89. doi: 10.18632/oncotarget.7164.
11 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
12 Differential modulation of PI3-kinase/Akt pathway during all-trans retinoic acid- and Am80-induced HL-60 cell differentiation revealed by DNA microarray analysis. Biochem Pharmacol. 2004 Dec 1;68(11):2177-86.
13 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
14 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
15 Cisplatin transiently up-regulates hHR23 expression through enhanced translational efficiency in A549 adenocarcinoma cells. Toxicol Lett. 2011 Sep 10;205(3):341-50. doi: 10.1016/j.toxlet.2011.06.028. Epub 2011 Jul 2.
16 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
17 Characterization of arsenic trioxide resistant clones derived from Jurkat leukemia T cell line: focus on PI3K/Akt signaling pathway. Chem Biol Interact. 2013 Oct 5;205(3):198-211. doi: 10.1016/j.cbi.2013.07.011. Epub 2013 Aug 2.
18 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
19 A systems biology understanding of the synergistic effects of arsenic sulfide and Imatinib in BCR/ABL-associated leukemia. Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3378-83.
20 Phosphoproteomics reveals resveratrol-dependent inhibition of Akt/mTORC1/S6K1 signaling. J Proteome Res. 2014 Dec 5;13(12):5734-42. doi: 10.1021/pr500714a. Epub 2014 Oct 29.
21 Proteomic analysis of the cellular response to a potent sensitiser unveils the dynamics of haptenation in living cells. Toxicology. 2020 Dec 1;445:152603. doi: 10.1016/j.tox.2020.152603. Epub 2020 Sep 28.
22 The novel dual PI3K/mTOR inhibitor GDC-0941 synergizes with the MEK inhibitor U0126 in non-small cell lung cancer cells. Mol Med Rep. 2012 Feb;5(2):503-8. doi: 10.3892/mmr.2011.682. Epub 2011 Nov 16.
23 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
24 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
25 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
26 Global expression profiling of theophylline response genes in macrophages: evidence of airway anti-inflammatory regulation. Respir Res. 2005 Aug 8;6(1):89. doi: 10.1186/1465-9921-6-89.
27 Activation of the mTOR pathway by low levels of xenoestrogens in breast epithelial cells from high-risk women. Carcinogenesis. 2011 Nov;32(11):1724-33. doi: 10.1093/carcin/bgr196. Epub 2011 Sep 1.
28 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
29 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
30 Functional lipidomics: Palmitic acid impairs hepatocellular carcinoma development by modulating membrane fluidity and glucose metabolism. Hepatology. 2017 Aug;66(2):432-448. doi: 10.1002/hep.29033. Epub 2017 Jun 16.
31 ST1926, a novel and orally active retinoid-related molecule inducing apoptosis in myeloid leukemia cells: modulation of intracellular calcium homeostasis. Blood. 2004 Jan 1;103(1):194-207.
32 Resveratrol prevents rapamycin-induced upregulation of autophagy and selectively induces apoptosis in TSC2-deficient cells. Cell Cycle. 2014;13(3):371-82. doi: 10.4161/cc.27355. Epub 2013 Dec 4.
33 Marine biogenics in sea spray aerosols interact with the mTOR signaling pathway. Sci Rep. 2019 Jan 24;9(1):675.