General Information of Drug Off-Target (DOT) (ID: OTEFZB21)

DOT Name AP-2 complex subunit alpha-1 (AP2A1)
Synonyms
100 kDa coated vesicle protein A; Adaptor protein complex AP-2 subunit alpha-1; Adaptor-related protein complex 2 subunit alpha-1; Alpha-adaptin A; Alpha1-adaptin; Clathrin assembly protein complex 2 alpha-A large chain; Plasma membrane adaptor HA2/AP2 adaptin alpha A subunit
Gene Name AP2A1
Related Disease
Acute myelogenous leukaemia ( )
Gastric neoplasm ( )
Thyroid gland papillary carcinoma ( )
Abdominal aortic aneurysm ( )
Advanced cancer ( )
Arteriosclerosis ( )
Atherosclerosis ( )
Breast cancer ( )
Breast carcinoma ( )
Breast neoplasm ( )
Carcinoma ( )
Cholangiocarcinoma ( )
Colorectal carcinoma ( )
Dermatitis ( )
Glioma ( )
Hepatocellular carcinoma ( )
Nasal polyp ( )
Neoplasm ( )
Zika virus infection ( )
Adenocarcinoma ( )
Lung cancer ( )
Lung carcinoma ( )
Pancreatic cancer ( )
Pancreatic ductal carcinoma ( )
Rhabdomyosarcoma ( )
Squamous cell carcinoma ( )
Melanoma ( )
Branchiooculofacial syndrome ( )
Gastric cancer ( )
Stomach cancer ( )
Van der Woude syndrome ( )
UniProt ID
AP2A1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF01602 ; PF02296 ; PF02883
Sequence
MPAVSKGDGMRGLAVFISDIRNCKSKEAEIKRINKELANIRSKFKGDKALDGYSKKKYVC
KLLFIFLLGHDIDFGHMEAVNLLSSNKYTEKQIGYLFISVLVNSNSELIRLINNAIKNDL
ASRNPTFMCLALHCIANVGSREMGEAFAADIPRILVAGDSMDSVKQSAALCLLRLYKASP
DLVPMGEWTARVVHLLNDQHMGVVTAAVSLITCLCKKNPDDFKTCVSLAVSRLSRIVSSA
STDLQDYTYYFVPAPWLSVKLLRLLQCYPPPEDAAVKGRLVECLETVLNKAQEPPKSKKV
QHSNAKNAILFETISLIIHYDSEPNLLVRACNQLGQFLQHRETNLRYLALESMCTLASSE
FSHEAVKTHIDTVINALKTERDVSVRQRAADLLYAMCDRSNAKQIVSEMLRYLETADYAI
REEIVLKVAILAEKYAVDYSWYVDTILNLIRIAGDYVSEEVWYRVLQIVTNRDDVQGYAA
KTVFEALQAPACHENMVKVGGYILGEFGNLIAGDPRSSPPVQFSLLHSKFHLCSVATRAL
LLSTYIKFINLFPETKATIQGVLRAGSQLRNADVELQQRAVEYLTLSSVASTDVLATVLE
EMPPFPERESSILAKLKRKKGPGAGSALDDGRRDPSSNDINGGMEPTPSTVSTPSPSADL
LGLRAAPPPAAPPASAGAGNLLVDVFDGPAAQPSLGPTPEEAFLSELEPPAPESPMALLA
DPAPAADPGPEDIGPPIPEADELLNKFVCKNNGVLFENQLLQIGVKSEFRQNLGRMYLFY
GNKTSVQFQNFSPTVVHPGDLQTQLAVQTKRVAAQVDGGAQVQQVLNIECLRDFLTPPLL
SVRFRYGGAPQALTLKLPVTINKFFQPTEMAAQDFFQRWKQLSLPQQEAQKIFKANHPMD
AEVTKAKLLGFGSALLDNVDPNPENFVGAGIIQTKALQVGCLLRLEPNAQAQMYRLTLRT
SKEPVSRHLCELLAQQF
Function
Component of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein transport via transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome. The clathrin lattice serves as a mechanical scaffold but is itself unable to bind directly to membrane components. Clathrin-associated adaptor protein (AP) complexes which can bind directly to both the clathrin lattice and to the lipid and protein components of membranes are considered to be the major clathrin adaptors contributing the CCV formation. AP-2 also serves as a cargo receptor to selectively sort the membrane proteins involved in receptor-mediated endocytosis. AP-2 seems to play a role in the recycling of synaptic vesicle membranes from the presynaptic surface. AP-2 recognizes Y-X-X-[FILMV] (Y-X-X-Phi) and [ED]-X-X-X-L-[LI] endocytosis signal motifs within the cytosolic tails of transmembrane cargo molecules. AP-2 may also play a role in maintaining normal post-endocytic trafficking through the ARF6-regulated, non-clathrin pathway. During long-term potentiation in hippocampal neurons, AP-2 is responsible for the endocytosis of ADAM10. The AP-2 alpha subunit binds polyphosphoinositide-containing lipids, positioning AP-2 on the membrane. The AP-2 alpha subunit acts via its C-terminal appendage domain as a scaffolding platform for endocytic accessory proteins. The AP-2 alpha and AP-2 sigma subunits are thought to contribute to the recognition of the [ED]-X-X-X-L-[LI] motif.
Tissue Specificity
Expressed in the brain (at protein level) . Isoform A: Expressed in forebrain, skeletal muscle, spinal cord, cerebellum, salivary gland, heart and colon. Isoform B: Widely expressed in tissues and also in breast cancer and in prostate carcinoma cells.
KEGG Pathway
Endocytosis (hsa04144 )
Sy.ptic vesicle cycle (hsa04721 )
Endocrine and other factor-regulated calcium reabsorption (hsa04961 )
Huntington disease (hsa05016 )
Reactome Pathway
Retrograde neurotrophin signalling (R-HSA-177504 )
Nef Mediated CD8 Down-regulation (R-HSA-182218 )
MHC class II antigen presentation (R-HSA-2132295 )
EPH-ephrin mediated repulsion of cells (R-HSA-3928665 )
Trafficking of GluR2-containing AMPA receptors (R-HSA-416993 )
Recycling pathway of L1 (R-HSA-437239 )
WNT5A-dependent internalization of FZD4 (R-HSA-5099900 )
WNT5A-dependent internalization of FZD2, FZD5 and ROR2 (R-HSA-5140745 )
Cargo recognition for clathrin-mediated endocytosis (R-HSA-8856825 )
Clathrin-mediated endocytosis (R-HSA-8856828 )
VLDLR internalisation and degradation (R-HSA-8866427 )
LDL clearance (R-HSA-8964038 )
Potential therapeutics for SARS (R-HSA-9679191 )
Nef Mediated CD4 Down-regulation (R-HSA-167590 )

Molecular Interaction Atlas (MIA) of This DOT

31 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Acute myelogenous leukaemia DISCSPTN Definitive Altered Expression [1]
Gastric neoplasm DISOKN4Y Definitive Biomarker [2]
Thyroid gland papillary carcinoma DIS48YMM Definitive Biomarker [3]
Abdominal aortic aneurysm DISD06OF Strong Biomarker [4]
Advanced cancer DISAT1Z9 Strong Biomarker [5]
Arteriosclerosis DISK5QGC Strong Altered Expression [6]
Atherosclerosis DISMN9J3 Strong Altered Expression [6]
Breast cancer DIS7DPX1 Strong Biomarker [5]
Breast carcinoma DIS2UE88 Strong Biomarker [5]
Breast neoplasm DISNGJLM Strong Biomarker [7]
Carcinoma DISH9F1N Strong Altered Expression [8]
Cholangiocarcinoma DIS71F6X Strong Biomarker [9]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [10]
Dermatitis DISY5SZC Strong Altered Expression [11]
Glioma DIS5RPEH Strong Biomarker [12]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [13]
Nasal polyp DISLP3XE Strong Altered Expression [14]
Neoplasm DISZKGEW Strong Altered Expression [12]
Zika virus infection DISQUCTY Strong Biomarker [15]
Adenocarcinoma DIS3IHTY moderate Altered Expression [16]
Lung cancer DISCM4YA moderate Altered Expression [17]
Lung carcinoma DISTR26C moderate Altered Expression [17]
Pancreatic cancer DISJC981 moderate Altered Expression [18]
Pancreatic ductal carcinoma DIS26F9Q moderate Altered Expression [18]
Rhabdomyosarcoma DISNR7MS moderate Biomarker [19]
Squamous cell carcinoma DISQVIFL moderate Altered Expression [16]
Melanoma DIS1RRCY Disputed Biomarker [20]
Branchiooculofacial syndrome DISHJ9O9 Limited Genetic Variation [21]
Gastric cancer DISXGOUK Limited Biomarker [5]
Stomach cancer DISKIJSX Limited Biomarker [5]
Van der Woude syndrome DISADZS1 Limited Genetic Variation [22]
------------------------------------------------------------------------------------
⏷ Show the Full List of 31 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
5 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of AP-2 complex subunit alpha-1 (AP2A1). [23]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of AP-2 complex subunit alpha-1 (AP2A1). [24]
Bortezomib DMNO38U Approved Bortezomib decreases the expression of AP-2 complex subunit alpha-1 (AP2A1). [26]
SB-431542 DM0YOXQ Preclinical SB-431542 increases the expression of AP-2 complex subunit alpha-1 (AP2A1). [28]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of AP-2 complex subunit alpha-1 (AP2A1). [29]
------------------------------------------------------------------------------------
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of AP-2 complex subunit alpha-1 (AP2A1). [25]
------------------------------------------------------------------------------------
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
DNCB DMDTVYC Phase 2 DNCB affects the binding of AP-2 complex subunit alpha-1 (AP2A1). [27]
------------------------------------------------------------------------------------

References

1 Transcription factor AP-2 regulates acute myeloid leukemia cell proliferation by influencing Hoxa gene expression.Int J Biochem Cell Biol. 2013 Aug;45(8):1647-56. doi: 10.1016/j.biocel.2013.04.024. Epub 2013 May 6.
2 Functions of the AP-2 gene in activating apoptosis and inhibiting proliferation of gastric cancer cells both in vitro and in vivo.Arch Med Sci. 2017 Oct;13(6):1255-1261. doi: 10.5114/aoms.2017.71064. Epub 2017 Oct 31.
3 AP-2 expression in papillary thyroid carcinoma predicts tumor progression and poor prognosis.Cancer Manag Res. 2018 Aug 13;10:2615-2625. doi: 10.2147/CMAR.S167874. eCollection 2018.
4 Pravastatin activates activator protein 2 alpha to augment the angiotensin II-induced abdominal aortic aneurysms.Oncotarget. 2017 Feb 28;8(9):14294-14305. doi: 10.18632/oncotarget.15104.
5 AP-2 reverses vincristine-induced multidrug resistance of SGC7901 gastric cancer cells by inhibiting the Notch pathway.Apoptosis. 2017 Jul;22(7):933-941. doi: 10.1007/s10495-017-1379-x.
6 Activation of activator protein 2 alpha by aspirin alleviates atherosclerotic plaque growth and instability in vivo.Oncotarget. 2016 Aug 16;7(33):52729-52739. doi: 10.18632/oncotarget.10400.
7 Protein-binding microarray analysis of tumor suppressor AP2 target gene specificity.PLoS One. 2011;6(8):e22895. doi: 10.1371/journal.pone.0022895. Epub 2011 Aug 18.
8 Reduced expression of transcription factor AP-2 is associated with gastric adenocarcinoma prognosis.PLoS One. 2011;6(9):e24897. doi: 10.1371/journal.pone.0024897. Epub 2011 Sep 26.
9 Role of AP-2 and MAPK7 in the regulation of autocrine TGF-/miR-200b signals to maintain epithelial-mesenchymal transition in cholangiocarcinoma.J Hematol Oncol. 2017 Oct 30;10(1):170. doi: 10.1186/s13045-017-0528-6.
10 Long non-coding RNA CCAL regulates colorectal cancer progression by activating Wnt/-catenin signalling pathway via suppression of activator protein 2.Gut. 2016 Sep;65(9):1494-504. doi: 10.1136/gutjnl-2014-308392. Epub 2015 May 20.
11 Molecular mechanism of kallikrein-related peptidase 8/neuropsin-induced hyperkeratosis in inflamed skin.Br J Dermatol. 2010 Sep;163(3):466-75. doi: 10.1111/j.1365-2133.2010.09864.x. Epub 2010 Aug 12.
12 The miR-26a/AP-2/Nanog signaling axis mediates stem cell self-renewal and temozolomide resistance in glioma.Theranostics. 2019 Jul 28;9(19):5497-5516. doi: 10.7150/thno.33800. eCollection 2019.
13 Long non-coding RNA CCAL promotes hepatocellular carcinoma progression by regulating AP-2 and Wnt/-catenin pathway.Int J Biol Macromol. 2018 Apr 1;109:424-434. doi: 10.1016/j.ijbiomac.2017.12.110. Epub 2017 Dec 22.
14 AP2alpha is essential for MUC8 gene expression in human airway epithelial cells.J Cell Biochem. 2010 Aug 15;110(6):1386-98. doi: 10.1002/jcb.22655.
15 Zika virus induces abnormal cranial osteogenesis by negatively affecting cranial neural crest development.Infect Genet Evol. 2019 Apr;69:176-189. doi: 10.1016/j.meegid.2019.01.023. Epub 2019 Jan 19.
16 Down-regulation of the polymeric immunoglobulin receptor in non-small cell lung carcinoma: correlation with dysregulated expression of the transcription factors USF and AP2.J Biomed Sci. 2005;12(1):65-77. doi: 10.1007/s11373-004-8185-5.
17 AP-2 downregulation by cigarette smoke condensate is counteracted by p53 in human lung cancer cells.Int J Mol Med. 2014 Oct;34(4):1094-100. doi: 10.3892/ijmm.2014.1857. Epub 2014 Jul 17.
18 Aberrant expressions of AP-2 splice variants in pancreatic cancer.Pancreas. 2011 Jul;40(5):695-700. doi: 10.1097/MPA.0b013e31821f2715.
19 The essential role of clathrin-mediated endocytosis in the infectious entry of human enterovirus 71.J Biol Chem. 2011 Jan 7;286(1):309-21. doi: 10.1074/jbc.M110.168468. Epub 2010 Oct 18.
20 AP2 controls the dynamic balance between miR-126&126* and miR-221&222 during melanoma progression.Oncogene. 2016 Jun 9;35(23):3016-26. doi: 10.1038/onc.2015.357. Epub 2015 Oct 5.
21 Analysis of TFAP2A mutations in Branchio-Oculo-Facial Syndrome indicates functional complexity within the AP-2 DNA-binding domain.Hum Mol Genet. 2013 Aug 15;22(16):3195-206. doi: 10.1093/hmg/ddt173. Epub 2013 Apr 10.
22 Association and Mutation Analyses of the IRF6 Gene in Families With Nonsyndromic and Syndromic Cleft Lip and/or Cleft Palate.Cleft Palate Craniofac J. 2014 Jan;51(1):49-55. doi: 10.1597/11-220. Epub 2013 Feb 8.
23 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
24 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
25 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
26 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
27 Proteomic analysis of the cellular response to a potent sensitiser unveils the dynamics of haptenation in living cells. Toxicology. 2020 Dec 1;445:152603. doi: 10.1016/j.tox.2020.152603. Epub 2020 Sep 28.
28 Activin/nodal signaling switches the terminal fate of human embryonic stem cell-derived trophoblasts. J Biol Chem. 2015 Apr 3;290(14):8834-48.
29 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730. doi: 10.1016/j.envint.2021.106730. Epub 2021 Jun 27.