General Information of Disease (ID: DISLP3XE)

Disease Name Nasal polyp
Synonyms nasal cavity polyp; nasal polyp; polyp of nasal cavity; polyp of the nasal cavity
Disease Class CA0J: Nasal polyp
Definition A soft and painless polypoid mass that arises from the mucosa in the nasal cavity. It is usually the result of an inflammatory process. It may recur following surgical resection.
Disease Hierarchy
DISRSLYF: Polyp
DISC0DZ3: Nasal cavity disorder
DISLP3XE: Nasal polyp
ICD Code
ICD-11
ICD-11: CA0J
ICD-9
ICD-9: 471
Expand ICD-11
'CA0J
Expand ICD-10
'J30-J39; 'J33; 'J33.0; 'J33.8; 'J33.9
Expand ICD-9
471
Disease Identifiers
MONDO ID
MONDO_0006314
MESH ID
D009298
UMLS CUI
C0027430
MedGen ID
6524
HPO ID
HP:0100582
SNOMED CT ID
736500007

Drug-Interaction Atlas (DIA) of This Disease

Drug-Interaction Atlas (DIA)
This Disease is Treated as An Indication in 1 Approved Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
Beclomethasone dipropionate DM5NW1E Phase 4 NA [1]
------------------------------------------------------------------------------------
This Disease is Treated as An Indication in 1 Clinical Trial Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
lormetazepam DM072P5 Clinical trial Small molecular drug [2]
------------------------------------------------------------------------------------

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 66 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
IL22 TTLDX4N Limited Altered Expression [3]
KITLG TTDJ51N Limited Biomarker [4]
PTGS1 TT8NGED Limited Genetic Variation [5]
ARG2 TTV1AG6 moderate Altered Expression [6]
OSM TTIVXSE moderate Biomarker [7]
SDC1 TTYDSVG moderate Biomarker [8]
ADAM33 TTQICM2 Strong Biomarker [9]
ALOX15 TTN9T81 Strong Genetic Variation [10]
CCL17 TTMPHAE Strong Altered Expression [11]
CCL5 TT9DWLC Strong Biomarker [12]
CCR3 TTD3XFU Strong Altered Expression [12]
CD1A TTBGTFN Strong Biomarker [13]
CD69 TTPQE9F Strong Biomarker [14]
CD83 TTT9MRQ Strong Biomarker [13]
CFTR TTRLZHP Strong Biomarker [15]
CHIA TTJB1O0 Strong Altered Expression [16]
CHIT1 TTDYX6T Strong Altered Expression [16]
CLCA1 TT3AF4R Strong Altered Expression [17]
CLCN2 TT30NW6 Strong Altered Expression [18]
CLCN3 TT8XNZ7 Strong Altered Expression [18]
CLEC4C TT7YT06 Strong Biomarker [19]
CRLF2 TTRMZ0N Strong Altered Expression [20]
CYSLTR2 TT0PZR5 Strong Biomarker [21]
DEFB4A TTIVY12 Strong Altered Expression [22]
FABP1 TTIV96N Strong Biomarker [23]
FOXP1 TT0MUCI Strong Genetic Variation [10]
GATA3 TT45KOB Strong Genetic Variation [10]
GLRX TTRJCNG Strong Altered Expression [24]
GPR17 TTMPART Strong Altered Expression [25]
HLA-B TTGS10J Strong Genetic Variation [10]
HLA-DQA1 TTU2I3J Strong Genetic Variation [10]
HSD11B1 TTN7BL9 Strong Biomarker [26]
IFNL1 TTM624L Strong Biomarker [27]
IL13RA2 TTMPZ7V Strong Altered Expression [28]
IL19 TT87RWS Strong Altered Expression [29]
IL1R2 TT51DEV Strong Altered Expression [30]
IL1RL1 TT4GZA4 Strong Genetic Variation [10]
IL1RL2 TTUS18T Strong Altered Expression [31]
IL21 TT9QEJ6 Strong Altered Expression [3]
IL25 TTVMO5W Strong Biomarker [32]
IL31 TT1RJXK Strong Altered Expression [33]
LTB4R2 TTVJX54 Strong Altered Expression [34]
LTC4S TTW7OTG Strong Genetic Variation [35]
PGA5 TTKZ864 Strong Altered Expression [36]
PTGDR TTNVEIR Strong Biomarker [35]
PTGDR2 TTQDMX5 Strong Biomarker [37]
RNPEP TTD74YX Strong Biomarker [38]
S100A8 TT4AF6N Strong Biomarker [39]
SCGB2A2 TT1W3RE Strong Altered Expression [40]
SLC12A4 TTJ8C67 Strong Altered Expression [17]
SLC26A4 TT7X02I Strong Altered Expression [41]
SPDEF TT2ZUPY Strong Altered Expression [42]
SYVN1 TT8XKYM Strong Altered Expression [43]
TLR9 TTSHG0T Strong Altered Expression [44]
TNFRSF25 TTDV6BQ Strong Biomarker [45]
TNFSF13B TTWMIDN Strong Altered Expression [46]
TNFSF4 TTBW580 Strong Altered Expression [20]
TNNC1 TT8RDXP Strong Altered Expression [47]
TRPA1 TTELV3W Strong Altered Expression [48]
TRPV3 TT946IA Strong Biomarker [49]
IL13 TT0GVCH Definitive Biomarker [50]
IL33 TT5MD4P Definitive Altered Expression [51]
IL5 TTPREZD Definitive Biomarker [52]
MUC5AC TTEL90S Definitive Altered Expression [53]
POSTN TT8ALTZ Definitive Biomarker [50]
PTGER2 TT1ZAVI Definitive Altered Expression [54]
------------------------------------------------------------------------------------
⏷ Show the Full List of 66 DTT(s)
This Disease Is Related to 4 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
SLC22A4 DT2EG60 Strong Genetic Variation [10]
SLC4A4 DTWDEIL Strong Biomarker [17]
SLC4A8 DTW40Z7 Strong Biomarker [17]
SLC5A8 DTE3TAW Strong Altered Expression [55]
------------------------------------------------------------------------------------
This Disease Is Related to 3 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
PTGDS DER3H9C moderate Altered Expression [56]
CPA4 DEXKD7J Strong Altered Expression [57]
CYP2S1 DE6NMGO Strong Genetic Variation [10]
------------------------------------------------------------------------------------
This Disease Is Related to 84 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
PLB1 OTZ6TTYV moderate Biomarker [58]
ADAMDEC1 OTMT7ZMG Strong Altered Expression [59]
AMT OTQYEWZQ Strong Altered Expression [55]
AP2A1 OTEFZB21 Strong Altered Expression [60]
BACH2 OT17GS18 Strong Genetic Variation [10]
BPIFA1 OTQFD2J5 Strong Altered Expression [61]
BPIFB2 OTXWTWQ9 Strong Biomarker [62]
C6 OTCKR304 Strong Biomarker [63]
CCL13 OTNX0JD0 Strong Biomarker [64]
CCL18 OT7JYSK9 Strong Altered Expression [65]
CCL24 OT9LGHV0 Strong Altered Expression [66]
CCL26 OT2B7HR9 Strong Altered Expression [67]
CCL7 OTDIS99H Strong Altered Expression [68]
CD180 OTITK5E6 Strong Biomarker [69]
CD1C OT4XINUJ Strong Biomarker [19]
CD207 OTI9RUDN Strong Altered Expression [19]
CD68 OTOYEY3J Strong Biomarker [70]
CIITA OTRJNZFO Strong Biomarker [71]
CLC OTYMYR85 Strong Biomarker [72]
COL26A1 OTMS7RNF Strong Biomarker [73]
COX1 OTG3O9BN Strong Altered Expression [74]
CPA3 OTOK8M0V Strong Altered Expression [57]
CST1 OTE4I83Q Strong Altered Expression [75]
DCBLD2 OTB71I02 Strong Biomarker [76]
DMBT1 OTVNU9D9 Strong Biomarker [77]
EBAG9 OTTQLQCP Strong Biomarker [78]
EMP1 OTSZHUHQ Strong Altered Expression [79]
ERCC3 OTVAW3P1 Strong Genetic Variation [80]
FOXJ1 OT7LLBZ7 Strong Biomarker [81]
GPX4 OTRAFFX2 Strong Genetic Variation [10]
GUCA2A OTUSF75G Strong Biomarker [82]
GUCA2B OTZERX04 Strong Altered Expression [82]
HAS3 OTPM8IL8 Strong Altered Expression [83]
HLA-DQA2 OT1DH0N9 Strong Biomarker [84]
HLA-DRA OT7KZMP2 Strong Genetic Variation [85]
HYAL1 OT2SJN0X Strong Biomarker [83]
IFNL2 OT4BMJF7 Strong Altered Expression [86]
IFRD1 OT4SQMLQ Strong Genetic Variation [87]
IL17RB OT0KDNSF Strong Altered Expression [20]
IL18R1 OT83XMPQ Strong Genetic Variation [10]
IL22RA1 OTGVKLBR Strong Altered Expression [88]
IL9R OTILCLXA Strong Altered Expression [89]
ITGAX OTOGIMHE Strong Biomarker [19]
ITLN1 OT7ZLJVV Strong Altered Expression [90]
KDM2B OTDMCVW7 Strong Biomarker [91]
KIF3A OTMUBSSK Strong Altered Expression [92]
LYST OTIUB1B3 Strong Biomarker [93]
MARVELD2 OTKB96L5 Strong Altered Expression [94]
MNT OTPC4ANL Strong Biomarker [95]
MSX2 OT1WDKE1 Strong Biomarker [96]
MUC4 OTLT11V1 Strong Altered Expression [97]
MUC5B OTPW6K5C Strong Altered Expression [42]
MUC6 OTPVL723 Strong Altered Expression [98]
MYDGF OT9HRPL6 Strong Biomarker [32]
MYRF OTKF6AEB Strong Genetic Variation [10]
NOSTRIN OT0LDSGS Strong Altered Expression [99]
PGA3 OT8EHCKQ Strong Altered Expression [36]
PGA4 OTKDMPMN Strong Altered Expression [36]
PLA2G10 OTRZ2L5A Strong Altered Expression [100]
PLA2G2D OTU604XM Strong Biomarker [100]
PLA2G2E OTGJ5XJR Strong Altered Expression [100]
RNASE2 OT8Z4FNE Strong Biomarker [101]
RNASE3 OTVE2XD1 Strong Biomarker [102]
S100A7 OTJFVJRF Strong Altered Expression [103]
SCGB1C1 OTA137WF Strong Genetic Variation [104]
SCGB2A1 OT9L87U9 Strong Altered Expression [40]
SCGB3A1 OTIR98RB Strong Genetic Variation [105]
SCGB3A2 OTB63PHR Strong Biomarker [106]
SFTPA1 OT87XL1U Strong Biomarker [107]
SFTPA2 OT6SFOMU Strong Biomarker [107]
SFTPB OTOHS07E Strong Altered Expression [108]
SIPA1 OTXY5RXC Strong Biomarker [107]
SPAG11A OTNQ9UB0 Strong Altered Expression [54]
SPAM1 OTMPOB4E Strong Biomarker [83]
SPINK5 OT61IIAO Strong Altered Expression [109]
STAT2 OTO9G2RZ Strong Altered Expression [110]
STATH OTQHBHM9 Strong Altered Expression [111]
TAC4 OTYWPPM3 Strong Altered Expression [66]
TMEM258 OTXSDU14 Strong Genetic Variation [10]
TNFSF8 OTDYGDJ3 Strong Biomarker [112]
TRAF3IP2 OTLLZERL Strong Biomarker [113]
DNAH5 OTC21RUS Definitive Biomarker [114]
RSPH9 OTRAK1LK Definitive Altered Expression [115]
STK11 OT1YZSP3 Definitive Genetic Variation [116]
------------------------------------------------------------------------------------
⏷ Show the Full List of 84 DOT(s)

References

1 Beclomethasone dipropionate FDA Label
2 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 7553).
3 Increased TSLP, IL-33, IL-25, IL-19, IL 21 and amphiregulin (AREG) levels in chronic rhinosinusitis with nasal polyp.Eur Arch Otorhinolaryngol. 2019 Jun;276(6):1685-1691. doi: 10.1007/s00405-019-05379-8. Epub 2019 Mar 19.
4 Association of stem cell factor expression in nasal polyp epithelial cells with aspirin sensitivity and asthma.Allergy. 2005 May;60(5):631-7. doi: 10.1111/j.1398-9995.2005.00753.x.
5 Computed Tomography Findings in Patients with Samter's Triad: An Observational Study.Open Med (Wars). 2019 Feb 26;14:241-246. doi: 10.1515/med-2019-0018. eCollection 2019.
6 Arginase Isoform Expression in Chronic Rhinosinusitis.J Clin Med. 2019 Nov 1;8(11):1809. doi: 10.3390/jcm8111809.
7 Neutrophils are a major source of the epithelial barrier disrupting cytokine oncostatin M in patients with mucosal airways disease.J Allergy Clin Immunol. 2017 Jun;139(6):1966-1978.e9. doi: 10.1016/j.jaci.2016.10.039. Epub 2016 Dec 18.
8 Expression of immunoglobulin D is increased in chronic rhinosinusitis.Ann Allergy Asthma Immunol. 2017 Oct;119(4):317-323.e1. doi: 10.1016/j.anai.2017.07.024.
9 Expression of a disintegrin and metalloproteinase 33 protein in nasal polyposis: an immunohistochemical study.Am J Rhinol Allergy. 2010 May-Jun;24(3):79-82. doi: 10.2500/ajra.2010.24.3480.
10 A loss-of-function variant in ALOX15 protects against nasal polyps and chronic rhinosinusitis.Nat Genet. 2019 Feb;51(2):267-276. doi: 10.1038/s41588-018-0314-6. Epub 2019 Jan 14.
11 Decreased expression of CCL17 in the disrupted nasal polyp epithelium and its regulation by IL-4 and IL-5.PLoS One. 2018 May 10;13(5):e0197355. doi: 10.1371/journal.pone.0197355. eCollection 2018.
12 Increased expression of chemokine receptors CCR1 and CCR3 in nasal polyps: molecular basis for recruitment of the granulocyte infiltrate.Folia Microbiol (Praha). 2013 May;58(3):219-24. doi: 10.1007/s12223-012-0194-6. Epub 2012 Oct 11.
13 Interactions between dendritic cells and T lymphocytes in pathogenesis of nasal polyps.Exp Ther Med. 2018 Jun;15(6):5167-5172. doi: 10.3892/etm.2018.6128. Epub 2018 May 3.
14 Accumulation of CD69+ tissueresident memory T cells in the nasal polyps of patients with chronic rhinosinusitis.Int J Mol Med. 2018 Aug;42(2):1116-1124. doi: 10.3892/ijmm.2018.3653. Epub 2018 May 2.
15 Identification of a novel 5' alternative CFTR mRNA isoform in a patient with nasal polyposis and CFTR mutations.Hum Mutat. 2014 Jul;35(7):805-8. doi: 10.1002/humu.22548. Epub 2014 Apr 9.
16 Role of acidic mammalian chitinase and chitotriosidase in nasal polyps.Otolaryngol Head Neck Surg. 2009 Oct;141(4):462-6. doi: 10.1016/j.otohns.2009.06.013.
17 Expression and distribution of ion transport mRNAs in human nasal mucosa and nasal polyps.Acta Otolaryngol. 2005 Jul;125(7):745-52. doi: 10.1080/00016480510028519.
18 Possible role of transforming growth factor beta and interleukin-4 in the up-regulation of CLC-2 and CLC-3 in chronic rhinosinusitis.Am J Rhinol. 2007 Jul-Aug;21(4):389-94. doi: 10.2500/ajr.2007.21.3045.
19 Elevated presence of myeloid dendritic cells in nasal polyps of patients with chronic rhinosinusitis.Clin Exp Allergy. 2015 Feb;45(2):384-93. doi: 10.1111/cea.12471.
20 Elevated expression of IL-17RB and ST2 on myeloid dendritic cells is associated with a Th2-skewed eosinophilic inflammation in nasal polyps.Clin Transl Allergy. 2018 Nov 29;8:50. doi: 10.1186/s13601-018-0237-4. eCollection 2018.
21 Expression of arachidonate metabolism enzymes and receptors in nasal polyps of aspirin-hypersensitive asthmatics.Int Arch Allergy Immunol. 2012;157(4):354-62. doi: 10.1159/000329744. Epub 2011 Nov 24.
22 Expression of human beta-defensin 2 in human nasal mucosa.Eur Arch Otorhinolaryngol. 2004 May;261(5):238-41. doi: 10.1007/s00405-003-0682-z. Epub 2003 Sep 18.
23 Association analysis of FABP1 gene polymorphisms with aspirin-exacerbated respiratory disease in asthma.Exp Lung Res. 2014 Dec;40(10):485-94. doi: 10.3109/01902148.2014.927939. Epub 2014 Oct 22.
24 Expression of glutaredoxin-1 in nasal polyps and airway epithelial cells.Am J Rhinol Allergy. 2009 May-Jun;23(3):288-93. doi: 10.2500/ajra.2009.23.3318.
25 Expression of cysteinyl leukotriene receptor GPR17 in eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps.Asian Pac J Allergy Immunol. 2018 Jun;36(2):93-100. doi: 10.12932/AP-030417-0063.
26 The ratio of 11-hydroxysteroid dehydrogenase 1/11-hydroxysteroid dehydrogenase 2 predicts glucocorticoid response in nasal polyps.Eur Arch Otorhinolaryngol. 2019 Jan;276(1):131-137. doi: 10.1007/s00405-018-5201-3. Epub 2018 Nov 16.
27 IFN-1 enhances Staphylococcus aureus clearance in healthy nasal mucosa but not in nasal polyps.J Allergy Clin Immunol. 2019 Apr;143(4):1416-1425.e4. doi: 10.1016/j.jaci.2018.09.041. Epub 2018 Nov 30.
28 Role of IL-13R2 in modulating IL-13-induced MUC5AC and ciliary changes in healthy and CRSwNP mucosa.Allergy. 2018 Aug;73(8):1673-1685. doi: 10.1111/all.13424. Epub 2018 Mar 27.
29 Increased expression of IL-19 in the epithelium of patients with chronic rhinosinusitis and nasal polyps.Allergy. 2012 Jul;67(7):878-86. doi: 10.1111/j.1398-9995.2012.02842.x. Epub 2012 May 14.
30 Gene-expression profiles in human nasal polyp tissues and identification of genetic susceptibility in aspirin-intolerant asthma. Clin Exp Allergy. 2009 Jul;39(7):972-81. doi: 10.1111/j.1365-2222.2009.03229.x. Epub 2009 Mar 27.
31 The activation and function of IL-36 in neutrophilic inflammation in chronic rhinosinusitis.J Allergy Clin Immunol. 2018 May;141(5):1646-1658. doi: 10.1016/j.jaci.2017.12.972. Epub 2017 Dec 21.
32 Local IL-25 contributes to Th2-biased inflammatory profiles in nasal polyps.Allergy. 2018 Feb;73(2):459-469. doi: 10.1111/all.13267. Epub 2017 Sep 7.
33 Role of IL-31 in regulation of Th2 cytokine levels in patients with nasal polyps.Eur Arch Otorhinolaryngol. 2014 Oct;271(10):2703-9. doi: 10.1007/s00405-014-2913-x. Epub 2014 Feb 11.
34 Expression of eicosanoid receptors subtypes and eosinophilic inflammation: implication on chronic rhinosinusitis.Respir Res. 2006 May 12;7(1):75. doi: 10.1186/1465-9921-7-75.
35 Genetic association study in nasal polyposis.J Investig Allergol Clin Immunol. 2012;22(5):331-40.
36 Effects of pepsin A on heat shock protein 70 response in laryngopharyngeal reflux patients with chronic rhinosinusitis.Acta Otolaryngol. 2017 Dec;137(12):1253-1259. doi: 10.1080/00016489.2017.1360515. Epub 2017 Aug 8.
37 Pharmacokinetics, pharmacodynamics, tolerability and prediction of clinically effective dose of ACT-774312: A novel CRTH2 antagonist.Basic Clin Pharmacol Toxicol. 2019 Jun;124(6):711-721. doi: 10.1111/bcpt.13197. Epub 2019 Feb 11.
38 The Intervention of CRAC Channels Alleviates Inflammatory Responses in Nasal Polyps.Int Arch Allergy Immunol. 2015;167(4):270-9. doi: 10.1159/000441109. Epub 2015 Oct 23.
39 Age-related increased prevalence of asthma and nasal polyps in chronic rhinosinusitis and its association with altered IL-6 trans-signaling.Am J Respir Cell Mol Biol. 2015 Nov;53(5):601-6. doi: 10.1165/rcmb.2015-0207RC.
40 Expression of mammaglobins A and B in nasal polyps is similar in patients with and without allergic rhinitis.Am J Rhinol. 2008 Mar-Apr;22(2):135-8. doi: 10.2500/ajr.2008.22.3138.
41 Increased expression of pendrin in eosinophilic chronic rhinosinusitis with nasal polyps.Braz J Otorhinolaryngol. 2019 Nov-Dec;85(6):760-765. doi: 10.1016/j.bjorl.2018.07.005. Epub 2018 Aug 7.
42 Distinct expression of NK2 homeobox 1 (NKX2-1) and goblet cell hyperplasia in nasal polyps with different endotypes.Int Forum Allergy Rhinol. 2017 Jul;7(7):690-698. doi: 10.1002/alr.21932. Epub 2017 Mar 20.
43 Differential Hrd1 Expression and B-Cell Accumulation in Eosinophilic and Non-eosinophilic Chronic Rhinosinusitis With Nasal Polyps.Allergy Asthma Immunol Res. 2018 Nov;10(6):698-715. doi: 10.4168/aair.2018.10.6.698.
44 Role of Toll-like receptor 9 signaling on activation of nasal polyp-derived fibroblasts and its association with nasal polypogenesis.Int Forum Allergy Rhinol. 2018 Sep;8(9):1001-1012. doi: 10.1002/alr.22155. Epub 2018 Jun 14.
45 A major population of mucosal memory CD4+ T cells, coexpressing IL-18R and DR3, display innate lymphocyte functionality.Mucosal Immunol. 2015 May;8(3):545-58. doi: 10.1038/mi.2014.87. Epub 2014 Oct 1.
46 Immunological Characteristics in Refractory Chronic Rhinosinusitis with Nasal Polyps Undergoing Revision Surgeries.Allergy Asthma Immunol Res. 2019 Sep;11(5):664-676. doi: 10.4168/aair.2019.11.5.664.
47 The up-regulated expression of tenascin C in human nasal polyp tissues is related to eosinophil-derived transforming growth factor beta1.Am J Rhinol. 2006 Nov-Dec;20(6):629-33. doi: 10.2500/ajr.2006.20.2918.
48 Upregulation of extraneuronal TRPV1 expression in chronic rhinosinusitis with nasal polyps.Rhinology. 2018 Sep 1;56(3):245-254. doi: 10.4193/Rhin17.108.
49 The significant expression of TRPV3 in nasal polyps of eosinophilic chronic rhinosinusitis.Allergol Int. 2017 Oct;66(4):610-616. doi: 10.1016/j.alit.2017.04.002. Epub 2017 Apr 24.
50 Th2 inflammatory responses in the development of nasal polyps and chronic rhinosinusitis.Curr Opin Allergy Clin Immunol. 2020 Feb;20(1):1-8. doi: 10.1097/ACI.0000000000000588.
51 Notch-1 signaling activation sustains overexpression of interleukin 33 in the epithelium of nasal polyps.J Cell Physiol. 2019 Apr;234(4):4582-4596. doi: 10.1002/jcp.27237. Epub 2018 Sep 27.
52 Th2 cytokines orchestrate the secretion of MUC5AC and MUC5B in IL-5-positive chronic rhinosinusitis with nasal polyps.Allergy. 2019 Jan;74(1):131-140. doi: 10.1111/all.13489. Epub 2018 Oct 11.
53 The role of autophagy in the overexpression of MUC5AC in patients with chronic rhinosinusitis.Int Immunopharmacol. 2019 Jun;71:169-180. doi: 10.1016/j.intimp.2019.03.028. Epub 2019 Mar 22.
54 Impaired E Prostanoid2 Expression and Resistance to Prostaglandin E2 in Nasal Polyp Fibroblasts from Subjects with Aspirin-Exacerbated Respiratory Disease.Am J Respir Cell Mol Biol. 2016 Jan;54(1):34-40. doi: 10.1165/rcmb.2014-0486OC.
55 RKIP and BRAF aberrations in human nasal polyps and the adjacent turbinate mucosae.Cancer Lett. 2008 Jun 18;264(2):288-98. doi: 10.1016/j.canlet.2008.01.046. Epub 2008 Mar 10.
56 Expression and characterization of PGD2 receptors in chronic rhinosinusitis: modulation of DP and CRTH2 by PGD2.Int Arch Allergy Immunol. 2009;148(2):127-36. doi: 10.1159/000155743. Epub 2008 Sep 19.
57 Glandular mast cells with distinct phenotype are highly elevated in chronic rhinosinusitis with nasal polyps.J Allergy Clin Immunol. 2012 Aug;130(2):410-20.e5. doi: 10.1016/j.jaci.2012.02.046. Epub 2012 Apr 24.
58 Phospholipase A2-dependent release of inflammatory cytokines by superantigen-stimulated nasal polyps of patients with chronic rhinosinusitis.Am J Rhinol Allergy. 2015 Sep-Oct;29(5):e122-8. doi: 10.2500/ajra.2015.29.4224.
59 The role of ADAM-like decysin 1 in non-eosinophilic chronic rhinosinusitis with nasal polyps.Acta Otolaryngol. 2018 Sep;138(9):830-836. doi: 10.1080/00016489.2018.1481296. Epub 2018 Jun 23.
60 AP2alpha is essential for MUC8 gene expression in human airway epithelial cells.J Cell Biochem. 2010 Aug 15;110(6):1386-98. doi: 10.1002/jcb.22655.
61 Decreased PLUNC expression in nasal polyps is associated with multibacterial colonization in chronic rhinosinusitis patients.Eur Arch Otorhinolaryngol. 2014 Feb;271(2):299-304. doi: 10.1007/s00405-013-2535-8. Epub 2013 May 5.
62 Reduced expression of antimicrobial PLUNC proteins in nasal polyp tissues of patients with chronic rhinosinusitis.Allergy. 2012 Jul;67(7):920-8. doi: 10.1111/j.1398-9995.2012.02848.x.
63 Association analysis of C6 genetic variations and aspirin hypersensitivity in Korean asthmatic patients.Hum Immunol. 2011 Oct;72(10):973-8. doi: 10.1016/j.humimm.2011.05.022. Epub 2011 Jun 7.
64 Expression of MCP-4 by TLR ligand-stimulated nasal polyp fibroblasts.Acta Otolaryngol. 2007 Dec;127(12):1304-9. doi: 10.1080/00016480701242444.
65 Expression profiles of regulatory and helper T-cell-associated genes in nasal polyposis.Allergy. 2012 Jun;67(6):732-40. doi: 10.1111/j.1398-9995.2012.02811.x. Epub 2012 Mar 30.
66 Hemokinin-1 stimulates C-C motif chemokine ligand 24 production in macrophages to enhance eosinophilic inflammation in nasal polyps.Int Forum Allergy Rhinol. 2019 Nov;9(11):1334-1345. doi: 10.1002/alr.22430. Epub 2019 Sep 23.
67 Interleukin-4-induced posttranscriptional gene regulation of CCL26 by the RNA-binding protein HuR in primary human nasal polyp-derived epithelial cells.Int Forum Allergy Rhinol. 2019 Mar;9(3):311-321. doi: 10.1002/alr.22250. Epub 2018 Nov 24.
68 Increased eotaxin-mRNA expression in non-atopic and atopic nasal polyps: comparison to RANTES and MCP-3 expression.Rhinology. 1997 Dec;35(4):171-4.
69 Discordant frequencies of tissue-resident and circulating CD180-negative B cells in chronic rhinosinusitis.Int Forum Allergy Rhinol. 2017 Jun;7(6):609-614. doi: 10.1002/alr.21924. Epub 2017 Feb 25.
70 Increased expression of factor XIII-A in patients with chronic rhinosinusitis with nasal polyps.J Allergy Clin Immunol. 2013 Sep;132(3):584-592.e4. doi: 10.1016/j.jaci.2013.02.003. Epub 2013 Mar 28.
71 Genetic association analysis of CIITA variations with nasal polyp pathogenesis in asthmatic patients.Mol Med Rep. 2013 Mar;7(3):927-34. doi: 10.3892/mmr.2012.1251. Epub 2012 Dec 27.
72 Superior turbinate eosinophilia correlates with olfactory deficit in chronic rhinosinusitis patients.Laryngoscope. 2017 Oct;127(10):2210-2218. doi: 10.1002/lary.26555. Epub 2017 Mar 21.
73 Possible role of EMID2 on nasal polyps pathogenesis in Korean asthma patients.BMC Med Genet. 2012 Jan 4;13:2. doi: 10.1186/1471-2350-13-2.
74 Dynamics of COX-2 in nasal mucosa and nasal polyps from aspirin-tolerant and aspirin-intolerant patients with asthma.J Allergy Clin Immunol. 2004 Oct;114(4):814-9. doi: 10.1016/j.jaci.2004.07.050.
75 Expression and Functional Analysis of CST1 in Intractable Nasal Polyps.Am J Respir Cell Mol Biol. 2018 Oct;59(4):448-457. doi: 10.1165/rcmb.2017-0325OC.
76 DCBLD2 gene variations correlate with nasal polyposis in Korean asthma patients.Lung. 2012 Apr;190(2):199-207. doi: 10.1007/s00408-011-9354-8. Epub 2012 Jan 21.
77 Silenced DMBT1 promotes nasal mucosa epithelial cell growth.Ann Hum Genet. 2018 Mar;82(2):102-108. doi: 10.1111/ahg.12230. Epub 2017 Nov 17.
78 The evaluation of metallothionein expression in nasal polyps with respect to immune cell presence and activity.BMC Immunol. 2010 Mar 9;11:10. doi: 10.1186/1471-2172-11-10.
79 Down-regulation of EMP1 is associated with epithelial hyperplasia and metaplasia in nasal polyps.Histopathology. 2013 Nov;63(5):686-95. doi: 10.1111/his.12211. Epub 2013 Aug 29.
80 Gene-environment interactions between ERCC2, ERCC3, XRCC1 and cadmium exposure in nasal polyposis disease.J Appl Genet. 2017 May;58(2):221-229. doi: 10.1007/s13353-016-0375-0. Epub 2016 Nov 12.
81 Aberrant localization of FOXJ1 correlates with the disease severity and comorbidities in patients with nasal polyps.Allergy Asthma Clin Immunol. 2018 Nov 14;14:71. doi: 10.1186/s13223-018-0296-z. eCollection 2018.
82 Expression of guanylin and uroguanylin mRNA in human nasal mucosa and nasal polyps.Acta Otolaryngol. 2004 Mar;124(2):179-85. doi: 10.1080/00016480310016073.
83 Hyaluronan synthases and hyaluronidases in nasal polyps.Eur Arch Otorhinolaryngol. 2016 Jul;273(7):1801-8. doi: 10.1007/s00405-015-3848-6. Epub 2015 Dec 10.
84 DQA1 and DQB1 association and nasal polyposis.Otolaryngol Head Neck Surg. 2006 Aug;135(2):243-7. doi: 10.1016/j.otohns.2006.03.034.
85 HLA-DRA polymorphisms associated with risk of nasal polyposis in asthmatic patients.Am J Rhinol Allergy. 2012 Jan-Feb;26(1):12-7. doi: 10.2500/ajra.2012.26.3692.
86 Effect of IFN-2 on combined allergic rhinitis with nasal polyps.Eur Rev Med Pharmacol Sci. 2018 Mar;22(6):1588-1594. doi: 10.26355/eurrev_201803_14563.
87 IFRD1 gene polymorphisms are associated with nasal polyposis in cystic fibrosis patients.Rhinology. 2015 Dec;53(4):359-64. doi: 10.4193/Rhino14.229.
88 Polymorphisms in the interleukin-22 receptor alpha-1 gene are associated with severe chronic rhinosinusitis.Otolaryngol Head Neck Surg. 2009 May;140(5):741-7. doi: 10.1016/j.otohns.2008.12.058. Epub 2009 Feb 28.
89 Involvement of IL-9 in the bronchial phenotype of patients with nasal polyposis.J Allergy Clin Immunol. 2004 Mar;113(3):462-9. doi: 10.1016/j.jaci.2003.12.009.
90 Increased expression of intelectin-1 in nasal polyps.Am J Rhinol Allergy. 2012 Jul-Aug;26(4):274-7. doi: 10.2500/ajra.2012.26.3771.
91 Regulation of KDM2B and Brg1 on Inflammatory Response of Nasal Mucosa in CRSwNP.Inflammation. 2019 Aug;42(4):1389-1400. doi: 10.1007/s10753-019-01000-6.
92 KIF3A, a cilia structural gene on chromosome 5q31, and its polymorphisms show an association with aspirin hypersensitivity in asthma. J Clin Immunol. 2011 Feb;31(1):112-21. doi: 10.1007/s10875-010-9462-x. Epub 2010 Oct 5.
93 GM-CSF, IL-5 and RANTES immunoreactivity and mRNA expression in chronic hyperplastic sinusitis with nasal polyposis (NP).Clin Exp Allergy. 1998 Sep;28(9):1145-52. doi: 10.1046/j.1365-2222.1998.00380.x.
94 Different expressions of erbB1/2 and tight junction proteins in hypertrophic inferior turbinates and nasal polyps.Eur Arch Otorhinolaryngol. 2013 Mar;270(3):945-51. doi: 10.1007/s00405-012-2166-5. Epub 2012 Aug 28.
95 Differential Expression of TFF1 and TFF3 in Patients Suffering from Chronic Rhinosinusitis with Nasal Polyposis.Int J Mol Sci. 2019 Nov 1;20(21):5461. doi: 10.3390/ijms20215461.
96 Nasal inverted papilloma expresses the muscle segment homeobox gene Msx2: possible prognostic implications.Hum Pathol. 2008 Mar;39(3):350-8. doi: 10.1016/j.humpath.2007.06.017. Epub 2008 Jan 9.
97 MUC4 impairs the anti-inflammatory effects of corticosteroids in patients with chronic rhinosinusitis with nasal polyps.J Allergy Clin Immunol. 2017 Mar;139(3):855-862.e13. doi: 10.1016/j.jaci.2016.06.064. Epub 2016 Sep 14.
98 Mucin gene expression in nasal polyps.Acta Otolaryngol. 2005 Jun;125(6):618-24. doi: 10.1080/00016480510027538.
99 Increased phosphorylation of eNOS in nasal polyps of chronic rhinosinusitis patients can be diminished by 1,8-cineol.Nitric Oxide. 2018 Aug 1;78:89-94. doi: 10.1016/j.niox.2018.06.002. Epub 2018 Jun 6.
100 Group II subfamily secretory phospholipase A2 enzymes: expression in chronic rhinosinusitis with and without nasal polyps.Allergy. 2007 Sep;62(9):999-1006. doi: 10.1111/j.1398-9995.2007.01381.x. Epub 2007 Jun 18.
101 Eosinophil-derived neurotoxin enhances airway remodeling in eosinophilic chronic rhinosinusitis and correlates with disease severity.Int Immunol. 2019 Feb 6;31(1):33-40. doi: 10.1093/intimm/dxy061.
102 Associations Between Inflammatory Endotypes and Clinical Presentations in Chronic Rhinosinusitis.J Allergy Clin Immunol Pract. 2019 Nov-Dec;7(8):2812-2820.e3. doi: 10.1016/j.jaip.2019.05.009. Epub 2019 May 22.
103 Epithelial genes in chronic rhinosinusitis with and without nasal polyps.Am J Rhinol. 2008 May-Jun;22(3):228-34. doi: 10.2500/ajr.2008.22.3162.
104 Single-Nucleotide Polymorphisms on the RYD5 Gene in Nasal Polyposis.DNA Cell Biol. 2015 Oct;34(10):633-42. doi: 10.1089/dna.2015.2897. Epub 2015 Jul 23.
105 Investigation of SCGB3A1 (UGRP2) gene arrays in patients with nasal polyposis.Eur Arch Otorhinolaryngol. 2014 Dec;271(12):3209-14. doi: 10.1007/s00405-014-3020-8. Epub 2014 Apr 8.
106 The cytokine-driven regulation of secretoglobins in normal human upper airway and their expression, particularly that of uteroglobin-related protein 1, in chronic rhinosinusitis.Respir Res. 2011 Mar 8;12(1):28. doi: 10.1186/1465-9921-12-28.
107 Sinonasal surfactant protein A1, A2, and D gene expression in cystic fibrosis: a preliminary report.Otolaryngol Head Neck Surg. 2007 Jul;137(1):34-8. doi: 10.1016/j.otohns.2007.01.025.
108 Surfactant protein B detection and gene expression in chronic rhinosinusitis.Laryngoscope. 2007 Jul;117(7):1296-301. doi: 10.1097/MLG.0b013e31805c9a28.
109 Low SPINK5 expression in chronic rhinosinusitis.Laryngoscope. 2012 Jun;122(6):1198-204. doi: 10.1002/lary.23300. Epub 2012 May 8.
110 Enhanced Interferon- Response Contributes to Eosinophilic Chronic Rhinosinusitis.Front Immunol. 2018 Oct 16;9:2330. doi: 10.3389/fimmu.2018.02330. eCollection 2018.
111 Gene expression profiles in human nasal polyp tissues studied by means of DNA microarray.J Allergy Clin Immunol. 2004 Oct;114(4):783-90. doi: 10.1016/j.jaci.2004.04.052.
112 Increased accumulation of CD30 ligand-positive mast cells associates with eosinophilic inflammation in nasal polyps.Laryngoscope. 2019 Mar;129(3):E110-E117. doi: 10.1002/lary.27658. Epub 2018 Dec 20.
113 Interleukin-17A promotes MUC5AC expression and goblet cell hyperplasia in nasal polyps via the Act1-mediated pathway.PLoS One. 2014 Jun 3;9(6):e98915. doi: 10.1371/journal.pone.0098915. eCollection 2014.
114 Absence or mislocalization of DNAH5 is a characteristic marker for motile ciliary abnormality in nasal polyps.Laryngoscope. 2018 Mar;128(3):E97-E104. doi: 10.1002/lary.26983. Epub 2017 Nov 17.
115 An Integrated Analysis of Radial Spoke Head and Outer Dynein Arm Protein Defects and Ciliogenesis Abnormality in Nasal Polyps.Front Genet. 2019 Nov 13;10:1083. doi: 10.3389/fgene.2019.01083. eCollection 2019.
116 Nasal polyposis in Peutz-Jeghers syndrome: a distinct histopathological and molecular genetic entity.J Clin Pathol. 2007 Apr;60(4):392-6. doi: 10.1136/jcp.2005.036418. Epub 2006 Jun 14.