General Information of Drug Off-Target (DOT) (ID: OTFNQ1ZU)

DOT Name Protein transport protein Sec16A (SEC16A)
Synonyms SEC16 homolog A; p250
Gene Name SEC16A
Related Disease
Cutaneous squamous cell carcinoma ( )
Breast cancer ( )
Obesity ( )
Sarcoidosis ( )
Melanoma ( )
Parkinson disease ( )
Squamous cell carcinoma ( )
UniProt ID
SC16A_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF12932 ; PF12931
Sequence
MQPPPQTVPSGMAGPPPAGNPRSVFWASSPYRRRANNNAAVAPTTCPLQPVTDPFAFSRQ
ALQSTPLGSSSKSSPPVLQGPAPAGFSQHPGLLVPHTHARDSSQGPCEPLPGPLTQPRAH
ASPFSGALTPSAPPGPEMNRSAEVGPSSEPEVQTLPYLPHYIPGVDPETSHGGHPHGNMP
GLDRPLSRQNPHDGVVTPAASPSLPQPGLQMPGQWGPVQGGPQPSGQHRSPCPEGPVPSG
VPCATSVPHFPTPSILHQGPGHEQHSPLVAPPAALPSDGRDEVSHLQSGSHLANNSDPES
TFRQNPRIVNHWASPELRQNPGVKNEHRPASALVNPLARGDSPENRTHHPLGAGAGSGCA
PLEADSGASGALAMFFQGGETENEENLSSEKAGLSGQADFDDFCSSPGLGRPPAPTHVGA
GSLCQALLPGPSNEAAGDVWGDTASTGVPDASGSQYENVENLEFVQNQEVLPSEPLNLDP
SSPSDQFRYGPLPGPAVPRHGAVCHTGAPDATLHTVHPDSVSSSYSSRSHGRLSGSARPQ
ELVGTFIQQEVGKPEDEASGSFFKQIDSSPVGGETDETTVSQNYRGSVSQPSTPSPPKPT
GIFQTSANSSFEPVKSHLVGVKPFEADRANVVGEVRETCVRQKQCRPAAALPDASPGNLE
QPPDNMETLCAPQVCPLPLNSTTEAVHMLPHAGAPPLDTVYPAPEKRPSARTQGPVKCES
PATTLWAQSELPDFGGNVLLAPAAPALYVCAKPQPPVVQPPEEAMSGQQSRNPSSAAPVQ
SRGGIGASENLENPPKMGEEEALQSQASSGYASLLSSPPTESLQNPPVLIAQPDHSYNLA
QPINFSVSLSNSHEKNQSWREALVGDRPAVSSWALGGDSGENTSLSGIPTSSVLSLSLPS
SVAQSNFPQGSGASEMVSNQPANLLVQPPSQPVPENLVPESQKDRKAGSALPGFANSPAG
STSVVLVPPAHGTLVPDGNKANHSSHQEDTYGALDFTLSRTLENPVNVYNPSHSDSLASQ
QSVASHPRQSGPGAPNLDRFYQQVTKDAQGQPGLERAQQELVPPQQQASPPQLPKAMFSE
LSNPESLPAQGQAQNSAQSPASLVLVDAGQQLPPRPPQSSSVSLVSSGSGQAAVPSEQPW
PQPVPALAPGPPPQDLAAYYYYRPLYDAYQPQYSLPYPPEPGAASLYYQDVYSLYEPRYR
PYDGAASAYAQNYRYPEPERPSSRASHSSERPPPRQGYPEGYYSSKSGWSSQSDYYASYY
SSQYDYGDPGHWDRYHYSARVRDPRTYDRRYWCDAEYDAYRREHSAFGDRPEKRDNNWRY
DPRFTGSFDDDPDPHRDPYGEEVDRRSVHSEHSARSLHSAHSLASRRSSLSSHSHQSQIY
RSHNVAAGSYEAPLPPGSFHGDFAYGTYRSNFSSGPGFPEYGYPADTVWPAMEQVSSRPT
SPEKFSVPHVCARFGPGGQLIKVIPNLPSEGQPALVEVHSMEALLQHTSEQEEMRAFPGP
LAKDDTHKVDVINFAQNKAMKCLQNENLIDKESASLLWNFIVLLCRQNGTVVGTDIAELL
LRDHRTVWLPGKSPNEANLIDFTNEAVEQVEEEESGEAQLSFLTGGPAAAASSLERETER
FRELLLYGRKKDALESAMKNGLWGHALLLASKMDSRTHARVMTRFANSLPINDPLQTVYQ
LMSGRMPAASTCCGDEKWGDWRPHLAMVLSNLNNNMDVESRTMATMGDTLASRGLLDAAH
FCYLMAQAGFGVYTKKTTKLVLIGSNHSLPFLKFATNEAIQRTEAYEYAQSLGAETCPLP
SFQVFKFIYSCRLAEMGLATQAFHYCEAIAKSILTQPHLYSPVLISQLVQMASQLRLFDP
QLKEKPEEESLAAPTWLVHLQQVERQIKEGAGVWHQDGALPQQCPGTPSSEMEQLDRPGL
SQPGALGIANPLLAVPAPSPEHSSPSVRLLPSAPQTLPDGPLASPARVPMFPVPLPPGPL
EPGPGCVTPGPALGFLEPSGPGLPPGVPPLQERRHLLQEARSPDPGIVPQEAPVGNSLSE
LSEENFDGKFANLTPSRTVPDSEAPPGWDRADSGPTQPPLSLSPAPETKRPGQAAKKETK
EPKKGESWFFRWLPGKKKTEAYLPDDKNKSIVWDEKKNQWVNLNEPEEEKKAPPPPPTSM
PKTVQAAPPALPGPPGAPVNMYSRRAAGTRARYVDVLNPSGTQRSEPALAPADFVAPLAP
LPIPSNLFVPTPDAEEPQLPDGTGREGPAAARGLANPEPAPEPKVLSSAASLPGSELPSS
RPEGSQGGELSRCSSMSSLSREVSQHFNQAPGDLPAAGGPPSGAMPFYNPAQLAQACATS
GSSRLGRIGQRKHLVLN
Function
Acts as a molecular scaffold that plays a key role in the organization of the endoplasmic reticulum exit sites (ERES), also known as transitional endoplasmic reticulum (tER). SAR1A-GTP-dependent assembly of SEC16A on the ER membrane forms an organized scaffold defining an ERES. Required for secretory cargo traffic from the endoplasmic reticulum to the Golgi apparatus. Mediates the recruitment of MIA3/TANGO to ERES. Regulates both conventional (ER/Golgi-dependent) and GORASP2-mediated unconventional (ER/Golgi-independent) trafficking of CFTR to cell membrane. Positively regulates the protein stability of E3 ubiquitin-protein ligases RNF152 and RNF183 and the ER localization of RNF183. Acts as a RAB10 effector in the regulation of insulin-induced SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the cell membrane in adipocytes.
Tissue Specificity Ubiquitous. Expressed at higher levels in the pancreas.
Reactome Pathway
COPII-mediated vesicle transport (R-HSA-204005 )

Molecular Interaction Atlas (MIA) of This DOT

7 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Cutaneous squamous cell carcinoma DIS3LXUG Definitive Genetic Variation [1]
Breast cancer DIS7DPX1 Strong Biomarker [2]
Obesity DIS47Y1K Strong Genetic Variation [3]
Sarcoidosis DISE5B8Z Strong Biomarker [4]
Melanoma DIS1RRCY Limited Biomarker [1]
Parkinson disease DISQVHKL Limited Genetic Variation [5]
Squamous cell carcinoma DISQVIFL Limited Genetic Variation [6]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Protein transport protein Sec16A (SEC16A). [7]
TAK-243 DM4GKV2 Phase 1 TAK-243 decreases the sumoylation of Protein transport protein Sec16A (SEC16A). [20]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Protein transport protein Sec16A (SEC16A). [22]
Coumarin DM0N8ZM Investigative Coumarin affects the phosphorylation of Protein transport protein Sec16A (SEC16A). [22]
------------------------------------------------------------------------------------
16 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Protein transport protein Sec16A (SEC16A). [8]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Protein transport protein Sec16A (SEC16A). [9]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Protein transport protein Sec16A (SEC16A). [10]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Protein transport protein Sec16A (SEC16A). [11]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Protein transport protein Sec16A (SEC16A). [12]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Protein transport protein Sec16A (SEC16A). [13]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Protein transport protein Sec16A (SEC16A). [14]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Protein transport protein Sec16A (SEC16A). [15]
Marinol DM70IK5 Approved Marinol decreases the expression of Protein transport protein Sec16A (SEC16A). [16]
Selenium DM25CGV Approved Selenium decreases the expression of Protein transport protein Sec16A (SEC16A). [17]
Phenobarbital DMXZOCG Approved Phenobarbital decreases the expression of Protein transport protein Sec16A (SEC16A). [18]
Tamibarotene DM3G74J Phase 3 Tamibarotene decreases the expression of Protein transport protein Sec16A (SEC16A). [9]
Tocopherol DMBIJZ6 Phase 2 Tocopherol decreases the expression of Protein transport protein Sec16A (SEC16A). [17]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Protein transport protein Sec16A (SEC16A). [19]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Protein transport protein Sec16A (SEC16A). [21]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Protein transport protein Sec16A (SEC16A). [14]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Drug(s)

References

1 Genome-wide association study identifies novel susceptibility loci for cutaneous squamous cell carcinoma.Nat Commun. 2016 Jul 18;7:12048. doi: 10.1038/ncomms12048.
2 Are breast cancers driven by fusion genes?.Breast Cancer Res. 2012 Mar 16;14(2):303. doi: 10.1186/bcr3122.
3 Association study of common polymorphisms in MSRA, TFAP2B, MC4R, NRXN3, PPARGC1A, TMEM18, SEC16B, HOXB5 and OLFM4 genes with obesity-related traits among Portuguese children.J Hum Genet. 2014 Jun;59(6):307-13. doi: 10.1038/jhg.2014.23. Epub 2014 Mar 27.
4 Whole exome sequencing in three families segregating a pediatric case of sarcoidosis.BMC Med Genomics. 2018 Mar 6;11(1):23. doi: 10.1186/s12920-018-0338-x.
5 Leucine-rich repeat kinase 2 regulates Sec16A at ER exit sites to allow ER-Golgi export.EMBO J. 2014 Oct 16;33(20):2314-31. doi: 10.15252/embj.201487807. Epub 2014 Sep 8.
6 Combined analysis of keratinocyte cancers identifies novel genome-wide loci.Hum Mol Genet. 2019 Sep 15;28(18):3148-3160. doi: 10.1093/hmg/ddz121.
7 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
8 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
9 Differential modulation of PI3-kinase/Akt pathway during all-trans retinoic acid- and Am80-induced HL-60 cell differentiation revealed by DNA microarray analysis. Biochem Pharmacol. 2004 Dec 1;68(11):2177-86.
10 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
11 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
12 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
13 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
14 Bisphenol-A and estradiol exert novel gene regulation in human MCF-7 derived breast cancer cells. Mol Cell Endocrinol. 2004 Jun 30;221(1-2):47-55. doi: 10.1016/j.mce.2004.04.010.
15 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
16 JunD is involved in the antiproliferative effect of Delta9-tetrahydrocannabinol on human breast cancer cells. Oncogene. 2008 Aug 28;27(37):5033-44.
17 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
18 Proteomic analysis of hepatic effects of phenobarbital in mice with humanized liver. Arch Toxicol. 2022 Oct;96(10):2739-2754. doi: 10.1007/s00204-022-03338-7. Epub 2022 Jul 26.
19 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
20 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
21 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
22 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.