General Information of Drug Off-Target (DOT) (ID: OTG1CNND)

DOT Name Inward rectifier potassium channel 13 (KCNJ13)
Synonyms Inward rectifier K(+) channel Kir7.1; Potassium channel, inwardly rectifying subfamily J member 13
Gene Name KCNJ13
Related Disease
Leber congenital amaurosis 1 ( )
Leber congenital amaurosis 16 ( )
Snowflake vitreoretinal degeneration ( )
Alzheimer disease ( )
Aural atresia, congenital ( )
Cataract ( )
Coronary heart disease ( )
Inherited retinal dystrophy ( )
Vitreous syneresis ( )
Blindness ( )
Late-onset retinal degeneration ( )
Vitreoretinal degeneration ( )
Leber congenital amaurosis ( )
Retinopathy ( )
Stroke ( )
UniProt ID
KCJ13_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF01007 ; PF17655
Sequence
MDSSNCKVIAPLLSQRYRRMVTKDGHSTLQMDGAQRGLAYLRDAWGILMDMRWRWMMLVF
SASFVVHWLVFAVLWYVLAEMNGDLELDHDAPPENHTICVKYITSFTAAFSFSLETQLTI
GYGTMFPSGDCPSAIALLAIQMLLGLMLEAFITGAFVAKIARPKNRAFSIRFTDTAVVAH
MDGKPNLIFQVANTRPSPLTSVRVSAVLYQERENGKLYQTSVDFHLDGISSDECPFFIFP
LTYYHSITPSSPLATLLQHENPSHFELVVFLSAMQEGTGEICQRRTSYLPSEIMLHHCFA
SLLTRGSKGEYQIKMENFDKTVPEFPTPLVSKSPNRTDLDIHINGQSIDNFQISETGLTE
Function
Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. KCNJ13 has a very low single channel conductance, low sensitivity to block by external barium and cesium, and no dependence of its inward rectification properties on the internal blocking particle magnesium.
Tissue Specificity Predominantly expressed in small intestine. Expression is also detected in stomach, kidney, and all central nervous system regions tested with the exception of spinal cord.
KEGG Pathway
Protein digestion and absorption (hsa04974 )

Molecular Interaction Atlas (MIA) of This DOT

15 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Leber congenital amaurosis 1 DISY2B33 Definitive Genetic Variation [1]
Leber congenital amaurosis 16 DIS2HWZU Definitive Autosomal recessive [2]
Snowflake vitreoretinal degeneration DISXFPWC Definitive Autosomal dominant [3]
Alzheimer disease DISF8S70 Strong Biomarker [4]
Aural atresia, congenital DISCP7UV Strong Biomarker [5]
Cataract DISUD7SL Strong Genetic Variation [6]
Coronary heart disease DIS5OIP1 Strong Genetic Variation [7]
Inherited retinal dystrophy DISGGL77 Strong Genetic Variation [6]
Vitreous syneresis DISYBOSD Strong Genetic Variation [8]
Blindness DISTIM10 moderate Genetic Variation [9]
Late-onset retinal degeneration DIST9GP4 moderate Genetic Variation [10]
Vitreoretinal degeneration DISVPRKD moderate Genetic Variation [11]
Leber congenital amaurosis DISMGH8F Supportive Autosomal dominant [12]
Retinopathy DISB4B0F Limited Biomarker [1]
Stroke DISX6UHX Limited Biomarker [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 15 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Inward rectifier potassium channel 13 (KCNJ13). [14]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Inward rectifier potassium channel 13 (KCNJ13). [15]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Inward rectifier potassium channel 13 (KCNJ13). [16]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Inward rectifier potassium channel 13 (KCNJ13). [17]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Inward rectifier potassium channel 13 (KCNJ13). [18]
Decitabine DMQL8XJ Approved Decitabine affects the expression of Inward rectifier potassium channel 13 (KCNJ13). [19]
Panobinostat DM58WKG Approved Panobinostat decreases the expression of Inward rectifier potassium channel 13 (KCNJ13). [20]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Inward rectifier potassium channel 13 (KCNJ13). [20]
Belinostat DM6OC53 Phase 2 Belinostat decreases the expression of Inward rectifier potassium channel 13 (KCNJ13). [20]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Inward rectifier potassium channel 13 (KCNJ13). [21]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Inward rectifier potassium channel 13 (KCNJ13). [22]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)

References

1 Phagosomal and mitochondrial alterations in RPE may contribute to KCNJ13 retinopathy.Sci Rep. 2019 Mar 7;9(1):3793. doi: 10.1038/s41598-019-40507-8.
2 A Novel KCNJ13 Nonsense Mutation and Loss of Kir7.1 Channel Function Causes Leber Congenital Amaurosis (LCA16). Hum Mutat. 2015 Jul;36(7):720-7. doi: 10.1002/humu.22807. Epub 2015 May 20.
3 Genetic linkage of snowflake vitreoretinal degeneration to chromosome 2q36. Invest Ophthalmol Vis Sci. 2004 Dec;45(12):4498-503. doi: 10.1167/iovs.04-0722.
4 The Brief Memory and Executive Test (BMET): A cognitive screening tool to detect and differentiate vascular cognitive impairment and Alzheimer's disease.Int J Geriatr Psychiatry. 2018 Feb;33(2):e273-e279. doi: 10.1002/gps.4787. Epub 2017 Sep 7.
5 Hemorrhage recurrence risk factors in cerebral amyloid angiopathy: Comparative analysis of the overall small vessel disease severity score versus individual neuroimaging markers.J Neurol Sci. 2017 Sep 15;380:64-67. doi: 10.1016/j.jns.2017.07.015. Epub 2017 Jul 9.
6 A distinct vitreo-retinal dystrophy with early-onset cataract from recessive KCNJ13 mutations.Ophthalmic Genet. 2015 Mar;36(1):79-84. doi: 10.3109/13816810.2014.985846. Epub 2014 Dec 5.
7 Identification of 64 Novel Genetic Loci Provides an Expanded View on the Genetic Architecture of Coronary Artery Disease.Circ Res. 2018 Feb 2;122(3):433-443. doi: 10.1161/CIRCRESAHA.117.312086. Epub 2017 Dec 6.
8 Characterization of the R162W Kir7.1 mutation associated with snowflake vitreoretinopathy.Am J Physiol Cell Physiol. 2013 Mar 1;304(5):C440-9. doi: 10.1152/ajpcell.00363.2012. Epub 2012 Dec 19.
9 Gene Augmentation and Readthrough Rescue Channelopathy in an iPSC-RPE Model of Congenital Blindness.Am J Hum Genet. 2019 Feb 7;104(2):310-318. doi: 10.1016/j.ajhg.2018.12.019. Epub 2019 Jan 24.
10 Missense variants in the conserved transmembrane M2 protein domain of KCNJ13 associated with retinovascular changes in humans and zebrafish.Exp Eye Res. 2019 Dec;189:107852. doi: 10.1016/j.exer.2019.107852. Epub 2019 Oct 21.
11 Mutations in KCNJ13 cause autosomal-dominant snowflake vitreoretinal degeneration. Am J Hum Genet. 2008 Jan;82(1):174-80. doi: 10.1016/j.ajhg.2007.08.002.
12 Recessive mutations in KCNJ13, encoding an inwardly rectifying potassium channel subunit, cause leber congenital amaurosis. Am J Hum Genet. 2011 Jul 15;89(1):183-90. doi: 10.1016/j.ajhg.2011.06.002.
13 Perivascular spaces contribute to cognition beyond other small vessel disease markers.Neurology. 2019 Mar 19;92(12):e1309-e1321. doi: 10.1212/WNL.0000000000007124. Epub 2019 Feb 27.
14 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
15 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
16 Blood transcript immune signatures distinguish a subset of people with elevated serum ALT from others given acetaminophen. Clin Pharmacol Ther. 2016 Apr;99(4):432-41.
17 Gamma-irradiation and doxorubicin treatment of normal human cells cause cell cycle arrest via different pathways. Mol Cells. 2005 Dec 31;20(3):331-8.
18 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
19 Epigenetic silencing of novel tumor suppressors in malignant melanoma. Cancer Res. 2006 Dec 1;66(23):11187-93. doi: 10.1158/0008-5472.CAN-06-1274.
20 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
21 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
22 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.