General Information of Drug Off-Target (DOT) (ID: OTGDAJRZ)

DOT Name Ribosyldihydronicotinamide dehydrogenase (NQO2)
Synonyms EC 1.10.5.1; NRH dehydrogenase 2; NRH:quinone oxidoreductase 2; Quinone reductase 2; QR2
Gene Name NQO2
UniProt ID
NQO2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1QR2 ; 1SG0 ; 1XI2 ; 1ZX1 ; 2BZS ; 2QMY ; 2QMZ ; 2QR2 ; 2QWX ; 2QX4 ; 2QX6 ; 2QX8 ; 2QX9 ; 3FW1 ; 3G5M ; 3GAM ; 3NFR ; 3NHF ; 3NHJ ; 3NHK ; 3NHL ; 3NHP ; 3NHR ; 3NHS ; 3NHU ; 3NHW ; 3NHY ; 3O2N ; 3O73 ; 3OVM ; 3OWH ; 3OWX ; 3OX1 ; 3OX2 ; 3OX3 ; 3TE7 ; 3TEM ; 3TZB ; 3UXE ; 3UXH ; 4FGJ ; 4FGK ; 4FGL ; 4GQI ; 4GR9 ; 4QOD ; 4QOE ; 4QOF ; 4QOG ; 4QOH ; 4QOI ; 4QOJ ; 4U7F ; 4U7G ; 4U7H ; 4XDG ; 4XDH ; 4ZVK ; 4ZVL ; 4ZVM ; 4ZVN ; 5BUC ; 5LBT ; 5LBU ; 5LBW ; 5LBY ; 5LBZ ; 7O4D
EC Number
1.10.5.1
Pfam ID
PF02525
Sequence
MAGKKVLIVYAHQEPKSFNGSLKNVAVDELSRQGCTVTVSDLYAMNLEPRATDKDITGTL
SNPEVFNYGVETHEAYKQRSLASDITDEQKKVREADLVIFQFPLYWFSVPAILKGWMDRV
LCQGFAFDIPGFYDSGLLQGKLALLSVTTGGTAEMYTKTGVNGDSRYFLWPLQHGTLHFC
GFKVLAPQISFAPEIASEEERKGMVAAWSQRLQTIWKEEPIPCTAHWHFGQ
Function
The enzyme apparently serves as a quinone reductase in connection with conjugation reactions of hydroquinones involved in detoxification pathways as well as in biosynthetic processes such as the vitamin K-dependent gamma-carboxylation of glutamate residues in prothrombin synthesis.
Reactome Pathway
Phase I - Functionalization of compounds (R-HSA-211945 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Biotransformations of 5 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Menadione DMSJDTY Approved Ribosyldihydronicotinamide dehydrogenase (NQO2) increases the reduction of Menadione. [16]
Clozapine DMFC71L Approved Ribosyldihydronicotinamide dehydrogenase (NQO2) increases the reduction of Clozapine. [16]
Nicotinamide riboside DMJBYSE Phase 1 Ribosyldihydronicotinamide dehydrogenase (NQO2) increases the oxidation of Nicotinamide riboside. [24]
CB1954 DMVP4YK Discontinued in Phase 2 Ribosyldihydronicotinamide dehydrogenase (NQO2) increases the reduction of CB1954. [16]
Dichloroindophenol DMAEI51 Investigative Ribosyldihydronicotinamide dehydrogenase (NQO2) increases the reduction of Dichloroindophenol. [16]
------------------------------------------------------------------------------------
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Paraquat DMR8O3X Investigative Ribosyldihydronicotinamide dehydrogenase (NQO2) increases the response to substance of Paraquat. [14]
------------------------------------------------------------------------------------
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Ribosyldihydronicotinamide dehydrogenase (NQO2). [1]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Ribosyldihydronicotinamide dehydrogenase (NQO2). [18]
------------------------------------------------------------------------------------
22 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Ribosyldihydronicotinamide dehydrogenase (NQO2). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Ribosyldihydronicotinamide dehydrogenase (NQO2). [3]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Ribosyldihydronicotinamide dehydrogenase (NQO2). [4]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Ribosyldihydronicotinamide dehydrogenase (NQO2). [5]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Ribosyldihydronicotinamide dehydrogenase (NQO2). [6]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Ribosyldihydronicotinamide dehydrogenase (NQO2). [7]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Ribosyldihydronicotinamide dehydrogenase (NQO2). [8]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Ribosyldihydronicotinamide dehydrogenase (NQO2). [9]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Ribosyldihydronicotinamide dehydrogenase (NQO2). [10]
Isotretinoin DM4QTBN Approved Isotretinoin decreases the expression of Ribosyldihydronicotinamide dehydrogenase (NQO2). [11]
Bortezomib DMNO38U Approved Bortezomib increases the expression of Ribosyldihydronicotinamide dehydrogenase (NQO2). [12]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol decreases the expression of Ribosyldihydronicotinamide dehydrogenase (NQO2). [13]
Melatonin DMKWFBT Approved Melatonin affects the activity of Ribosyldihydronicotinamide dehydrogenase (NQO2). [14]
Tacrine DM51FY6 Approved Tacrine decreases the activity of Ribosyldihydronicotinamide dehydrogenase (NQO2). [16]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Ribosyldihydronicotinamide dehydrogenase (NQO2). [10]
Resveratrol DM3RWXL Phase 3 Resveratrol decreases the activity of Ribosyldihydronicotinamide dehydrogenase (NQO2). [17]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Ribosyldihydronicotinamide dehydrogenase (NQO2). [19]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Ribosyldihydronicotinamide dehydrogenase (NQO2). [20]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Ribosyldihydronicotinamide dehydrogenase (NQO2). [21]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of Ribosyldihydronicotinamide dehydrogenase (NQO2). [5]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Ribosyldihydronicotinamide dehydrogenase (NQO2). [22]
(E)-4-(3,5-dimethoxystyryl)phenol DMYXI2V Investigative (E)-4-(3,5-dimethoxystyryl)phenol increases the expression of Ribosyldihydronicotinamide dehydrogenase (NQO2). [23]
------------------------------------------------------------------------------------
⏷ Show the Full List of 22 Drug(s)
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
Hesperetin DMKER83 Approved Hesperetin affects the binding of Ribosyldihydronicotinamide dehydrogenase (NQO2). [15]
------------------------------------------------------------------------------------

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
3 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
4 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
5 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
6 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
7 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
8 Aberrantly expressed genes in HaCaT keratinocytes chronically exposed to arsenic trioxide. Biomark Insights. 2011 Feb 8;6:7-16.
9 Proteomic analysis of liver cancer cells treated with suberonylanilide hydroxamic acid. Cancer Chemother Pharmacol. 2008 Apr;61(5):791-802.
10 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
11 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
12 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
13 Identification of biomarkers and outcomes of endocrine disruption in human ovarian cortex using In Vitro Models. Toxicology. 2023 Feb;485:153425. doi: 10.1016/j.tox.2023.153425. Epub 2023 Jan 5.
14 The antidote effect of quinone oxidoreductase 2 inhibitor against paraquat-induced toxicity in vitro and in vivo. Br J Pharmacol. 2013 Jan;168(1):46-59. doi: 10.1111/j.1476-5381.2012.01870.x.
15 Various concentrations of hesperetin induce different types of programmed cell death in human breast cancerous and normal cell lines in a ROS-dependent manner. Chem Biol Interact. 2023 Sep 1;382:110642. doi: 10.1016/j.cbi.2023.110642. Epub 2023 Jul 23.
16 Reduction and scavenging of chemically reactive drug metabolites by NAD(P)H:quinone oxidoreductase 1 and NRH:quinone oxidoreductase 2 and variability in hepatic concentrations. Chem Res Toxicol. 2018 Feb 19;31(2):116-126.
17 Design, synthesis, biological and structural evaluation of functionalized resveratrol analogues as inhibitors of quinone reductase 2. Bioorg Med Chem. 2013 Oct 1;21(19):6022-37. doi: 10.1016/j.bmc.2013.07.037. Epub 2013 Jul 27.
18 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
19 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730. doi: 10.1016/j.envint.2021.106730. Epub 2021 Jun 27.
20 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
21 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
22 Sulforaphane-induced apoptosis in human leukemia HL-60 cells through extrinsic and intrinsic signal pathways and altering associated genes expression assayed by cDNA microarray. Environ Toxicol. 2017 Jan;32(1):311-328.
23 Proteomic identification of pterostilbene-mediated anticancer activities in HepG2 cells. Chem Res Toxicol. 2014 Jul 21;27(7):1243-52. doi: 10.1021/tx5001392. Epub 2014 Jul 1.
24 Old and new inhibitors of quinone reductase 2. Chem Biol Interact. 2010 Jul 30;186(2):103-9. doi: 10.1016/j.cbi.2010.04.006. Epub 2010 May 4.