General Information of Drug Off-Target (DOT) (ID: OTGVKLBR)

DOT Name Interleukin-22 receptor subunit alpha-1 (IL22RA1)
Synonyms IL-22 receptor subunit alpha-1; IL-22R-alpha-1; IL-22RA1; Cytokine receptor class-II member 9; Cytokine receptor family 2 member 9; CRF2-9; ZcytoR11
Gene Name IL22RA1
Related Disease
Adult glioblastoma ( )
Colitis ( )
Colon cancer ( )
Colon carcinoma ( )
Glioblastoma multiforme ( )
IgA nephropathy ( )
Nasal polyp ( )
Neoplasm ( )
Psoriasis ( )
Rheumatoid arthritis ( )
Influenza ( )
Pancreatic cancer ( )
Advanced cancer ( )
Glaucoma/ocular hypertension ( )
Pneumococcal infection ( )
Primary cutaneous T-cell lymphoma ( )
Thyroid gland papillary carcinoma ( )
UniProt ID
I22R1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3DGC; 3DLQ; 6DF3
Pfam ID
PF01108
Sequence
MRTLLTILTVGSLAAHAPEDPSDLLQHVKFQSSNFENILTWDSGPEGTPDTVYSIEYKTY
GERDWVAKKGCQRITRKSCNLTVETGNLTELYYARVTAVSAGGRSATKMTDRFSSLQHTT
LKPPDVTCISKVRSIQMIVHPTPTPIRAGDGHRLTLEDIFHDLFYHLELQVNRTYQMHLG
GKQREYEFFGLTPDTEFLGTIMICVPTWAKESAPYMCRVKTLPDRTWTYSFSGAFLFSMG
FLVAVLCYLSYRYVTKPPAPPNSLNVQRVLTFQPLRFIQEHVLIPVFDLSGPSSLAQPVQ
YSQIRVSGPREPAGAPQRHSLSEITYLGQPDISILQPSNVPPPQILSPLSYAPNAAPEVG
PPSYAPQVTPEAQFPFYAPQAISKVQPSSYAPQATPDSWPPSYGVCMEGSGKDSPTGTLS
SPKHLRPKGQLQKEPPAGSCMLGGLSLQEVTSLAMEESQEAKSLHQPLGICTDRTSDPNV
LHSGEEGTPQYLKGQLPLLSSVQIEGHPMSLPLQPPSRPCSPSDQGPSPWGLLESLVCPK
DEAKSPAPETSDLEQPTELDSLFRGLALTVQWES
Function
Component of the receptor for IL20, IL22 and IL24. Component of IL22 receptor formed by IL22RA1 and IL10RB enabling IL22 signaling via JAK/STAT pathways. IL22 also induces activation of MAPK1/MAPK3 and Akt kinases pathways. Component of one of the receptor for IL20 and IL24 formed by IL22RA1 and IL20RB also signaling through STATs activation. Mediates IL24 antiangiogenic activity as well as IL24 inhibitory effect on endothelial cell tube formation and differentiation.
Tissue Specificity
Expressed in colon, liver, lung, pancreas and kidney. No expression in immune cells such as monocytes, T-cells, and NK-cells. Expressed in keratinocytes of normal skin as well as in psoriatic skin lesion. Detected in normal blood brain barrier endothelial cells as well as in multiple sclerosis lesions; Strongly expressed on central nervous system vessels within infiltrated multiple sclerosis lesions. Overexpressed in synovial fluid cells from rheumatoid arthritis and spondyloarthropathy patients.
KEGG Pathway
Cytokine-cytokine receptor interaction (hsa04060 )
Viral protein interaction with cytokine and cytokine receptor (hsa04061 )
JAK-STAT sig.ling pathway (hsa04630 )
Reactome Pathway
Interleukin-20 family signaling (R-HSA-8854691 )

Molecular Interaction Atlas (MIA) of This DOT

17 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Adult glioblastoma DISVP4LU Strong Altered Expression [1]
Colitis DISAF7DD Strong Altered Expression [2]
Colon cancer DISVC52G Strong Altered Expression [3]
Colon carcinoma DISJYKUO Strong Altered Expression [3]
Glioblastoma multiforme DISK8246 Strong Altered Expression [1]
IgA nephropathy DISZ8MTK Strong Altered Expression [4]
Nasal polyp DISLP3XE Strong Altered Expression [5]
Neoplasm DISZKGEW Strong Biomarker [1]
Psoriasis DIS59VMN Strong Altered Expression [6]
Rheumatoid arthritis DISTSB4J Strong Biomarker [7]
Influenza DIS3PNU3 moderate Biomarker [8]
Pancreatic cancer DISJC981 moderate Biomarker [9]
Advanced cancer DISAT1Z9 Limited Altered Expression [1]
Glaucoma/ocular hypertension DISLBXBY Limited Biomarker [10]
Pneumococcal infection DIS6SXQD Limited Biomarker [11]
Primary cutaneous T-cell lymphoma DIS35WVW Limited Biomarker [12]
Thyroid gland papillary carcinoma DIS48YMM Limited Biomarker [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Interleukin-22 receptor subunit alpha-1 (IL22RA1). [14]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Interleukin-22 receptor subunit alpha-1 (IL22RA1). [24]
------------------------------------------------------------------------------------
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Interleukin-22 receptor subunit alpha-1 (IL22RA1). [15]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Interleukin-22 receptor subunit alpha-1 (IL22RA1). [16]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Interleukin-22 receptor subunit alpha-1 (IL22RA1). [17]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Interleukin-22 receptor subunit alpha-1 (IL22RA1). [18]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Interleukin-22 receptor subunit alpha-1 (IL22RA1). [19]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Interleukin-22 receptor subunit alpha-1 (IL22RA1). [20]
Rosiglitazone DMILWZR Approved Rosiglitazone decreases the expression of Interleukin-22 receptor subunit alpha-1 (IL22RA1). [21]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Interleukin-22 receptor subunit alpha-1 (IL22RA1). [22]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Interleukin-22 receptor subunit alpha-1 (IL22RA1). [23]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Interleukin-22 receptor subunit alpha-1 (IL22RA1). [25]
KOJIC ACID DMP84CS Investigative KOJIC ACID increases the expression of Interleukin-22 receptor subunit alpha-1 (IL22RA1). [26]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)

References

1 IL22 furthers malignant transformation of rat mesenchymal stem cells, possibly in association with IL22RA1/STAT3 signaling.Oncol Rep. 2019 Apr;41(4):2148-2158. doi: 10.3892/or.2019.7007. Epub 2019 Feb 11.
2 IL10R2 Overexpression Promotes IL22/STAT3 Signaling in Colorectal Carcinogenesis.Cancer Immunol Res. 2015 Nov;3(11):1227-35. doi: 10.1158/2326-6066.CIR-15-0031. Epub 2015 Jun 30.
3 Screening of Differentiation-Specific Molecular Biomarkers for Colon Cancer.Cell Physiol Biochem. 2018;46(6):2543-2550. doi: 10.1159/000489660. Epub 2018 May 5.
4 A polymorphism of interleukin-22 receptor alpha-1 is associated with the development of childhood IgA nephropathy.J Interferon Cytokine Res. 2013 Oct;33(10):571-7. doi: 10.1089/jir.2012.0097. Epub 2013 May 9.
5 Polymorphisms in the interleukin-22 receptor alpha-1 gene are associated with severe chronic rhinosinusitis.Otolaryngol Head Neck Surg. 2009 May;140(5):741-7. doi: 10.1016/j.otohns.2008.12.058. Epub 2009 Feb 28.
6 Ultrasound targeting of Q-starch/miR-197 complexes for topical treatment of psoriasis.J Control Release. 2018 Aug 28;284:103-111. doi: 10.1016/j.jconrel.2018.05.040. Epub 2018 Jun 2.
7 The IL-20 Cytokine Family in Rheumatoid Arthritis and Spondyloarthritis.Front Immunol. 2018 Sep 25;9:2226. doi: 10.3389/fimmu.2018.02226. eCollection 2018.
8 IL-22Ra1 is induced during influenza infection by direct and indirect TLR3 induction of STAT1.Respir Res. 2019 Aug 15;20(1):184. doi: 10.1186/s12931-019-1153-4.
9 IL22RA1/STAT3 Signaling Promotes Stemness and Tumorigenicity in Pancreatic Cancer.Cancer Res. 2018 Jun 15;78(12):3293-3305. doi: 10.1158/0008-5472.CAN-17-3131. Epub 2018 Mar 23.
10 LncRNA NR_003923 promotes cell proliferation, migration, fibrosis, and autophagy via the miR-760/miR-215-3p/IL22RA1 axis in human Tenon's capsule fibroblasts.Cell Death Dis. 2019 Aug 7;10(8):594. doi: 10.1038/s41419-019-1829-1.
11 Interleukin-22 (IL-22) Binding Protein Constrains IL-22 Activity, Host Defense, and Oxidative Phosphorylation Genes during Pneumococcal Pneumonia.Infect Immun. 2019 Oct 18;87(11):e00550-19. doi: 10.1128/IAI.00550-19. Print 2019 Nov.
12 MicroRNA-150 inhibits tumor invasion and metastasis by targeting the chemokine receptor CCR6, in advanced cutaneous T-cell lymphoma.Blood. 2014 Mar 6;123(10):1499-511. doi: 10.1182/blood-2013-09-527739. Epub 2014 Jan 2.
13 Interleukin 22 polymorphisms and papillary thyroid cancer.J Endocrinol Invest. 2013 Sep;36(8):584-7. doi: 10.3275/8879. Epub 2013 Feb 27.
14 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
15 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
16 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
17 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
18 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
19 Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells. Toxicol Appl Pharmacol. 2012 Jun 1;261(2):204-16.
20 Functional gene expression profile underlying methotrexate-induced senescence in human colon cancer cells. Tumour Biol. 2011 Oct;32(5):965-76.
21 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
22 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
23 Loss of TRIM33 causes resistance to BET bromodomain inhibitors through MYC- and TGF-beta-dependent mechanisms. Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):E4558-66.
24 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
25 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
26 Toxicogenomics of kojic acid on gene expression profiling of a375 human malignant melanoma cells. Biol Pharm Bull. 2006 Apr;29(4):655-69.