General Information of Drug Off-Target (DOT) (ID: OTHCCHHV)

DOT Name Tetraspanin-5 (TSPAN5)
Synonyms Tspan-5; Tetraspan NET-4; Transmembrane 4 superfamily member 9
Gene Name TSPAN5
Related Disease
Major depressive disorder ( )
Rheumatoid arthritis ( )
Neuroblastoma ( )
Osteoporosis ( )
Type-1 diabetes ( )
UniProt ID
TSN5_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00335
Sequence
MSGKHYKGPEVSCCIKYFIFGFNVIFWFLGITFLGIGLWAWNEKGVLSNISSITDLGGFD
PVWLFLVVGGVMFILGFAGCIGALRENTFLLKFFSVFLGIIFFLELTAGVLAFVFKDWIK
DQLYFFINNNIRAYRDDIDLQNLIDFTQEYWQCCGAFGADDWNLNIYFNCTDSNASRERC
GVPFSCCTKDPAEDVINTQCGYDARQKPEVDQQIVIYTKGCVPQFEKWLQDNLTIVAGIF
IGIALLQIFGICLAQNLVSDIEAVRASW
Function
Part of TspanC8 subgroup, composed of 6 members that interact with the transmembrane metalloprotease ADAM10. This interaction is required for ADAM10 exit from the endoplasmic reticulum and for enzymatic maturation and trafficking to the cell surface as well as substrate specificity. Different TspanC8/ADAM10 complexes have distinct substrates. Promotes ADAM10-mediated cleavage of CD44. Seems to regulate VE-cadherin expression in endothelial cells probably through interaction with ADAM10, promoting leukocyte transmigration.
Reactome Pathway
Amyloid fiber formation (R-HSA-977225 )

Molecular Interaction Atlas (MIA) of This DOT

5 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Major depressive disorder DIS4CL3X Strong Genetic Variation [1]
Rheumatoid arthritis DISTSB4J Strong Genetic Variation [2]
Neuroblastoma DISVZBI4 Limited Biomarker [3]
Osteoporosis DISF2JE0 Limited Biomarker [4]
Type-1 diabetes DIS7HLUB Limited Biomarker [4]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Tetraspanin-5 (TSPAN5). [5]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Tetraspanin-5 (TSPAN5). [12]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of Tetraspanin-5 (TSPAN5). [21]
------------------------------------------------------------------------------------
16 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Tetraspanin-5 (TSPAN5). [6]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Tetraspanin-5 (TSPAN5). [7]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Tetraspanin-5 (TSPAN5). [8]
Doxorubicin DMVP5YE Approved Doxorubicin affects the expression of Tetraspanin-5 (TSPAN5). [9]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Tetraspanin-5 (TSPAN5). [10]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Tetraspanin-5 (TSPAN5). [11]
Quercetin DM3NC4M Approved Quercetin increases the expression of Tetraspanin-5 (TSPAN5). [13]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Tetraspanin-5 (TSPAN5). [14]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Tetraspanin-5 (TSPAN5). [15]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Tetraspanin-5 (TSPAN5). [16]
Triclosan DMZUR4N Approved Triclosan increases the expression of Tetraspanin-5 (TSPAN5). [17]
Menadione DMSJDTY Approved Menadione affects the expression of Tetraspanin-5 (TSPAN5). [14]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Tetraspanin-5 (TSPAN5). [18]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Tetraspanin-5 (TSPAN5). [19]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Tetraspanin-5 (TSPAN5). [20]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Tetraspanin-5 (TSPAN5). [22]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Drug(s)

References

1 Pharmacogenomics-Driven Prediction of Antidepressant Treatment Outcomes: A Machine-Learning Approach With Multi-trial Replication.Clin Pharmacol Ther. 2019 Oct;106(4):855-865. doi: 10.1002/cpt.1482. Epub 2019 Jun 29.
2 Genome-wide association analysis implicates the involvement of eight loci with response to tocilizumab for the treatment of rheumatoid arthritis.Pharmacogenomics J. 2013 Jun;13(3):235-41. doi: 10.1038/tpj.2012.8. Epub 2012 Apr 10.
3 TSPAN5, ERICH3 and selective serotonin reuptake inhibitors in major depressive disorder: pharmacometabolomics-informed pharmacogenomics.Mol Psychiatry. 2016 Dec;21(12):1717-1725. doi: 10.1038/mp.2016.6. Epub 2016 Feb 23.
4 Screening of differentially expressed genes in male idiopathic osteoporosis via RNA sequencing.Mol Med Rep. 2018 Jul;18(1):67-76. doi: 10.3892/mmr.2018.8985. Epub 2018 May 7.
5 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
6 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
7 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
8 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
9 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
10 The thioxotriazole copper(II) complex A0 induces endoplasmic reticulum stress and paraptotic death in human cancer cells. J Biol Chem. 2009 Sep 4;284(36):24306-19.
11 Epidermal growth factor receptor signalling in human breast cancer cells operates parallel to estrogen receptor alpha signalling and results in tamoxifen insensitive proliferation. BMC Cancer. 2014 Apr 23;14:283.
12 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
13 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
14 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
15 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
16 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
17 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
18 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
19 Transcriptional signature of human macrophages exposed to the environmental contaminant benzo(a)pyrene. Toxicol Sci. 2010 Apr;114(2):247-59.
20 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
21 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
22 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.