General Information of Drug Off-Target (DOT) (ID: OTLG1WPK)

DOT Name Heat shock protein HSP 90-alpha (HSP90AA1)
Synonyms EC 3.6.4.10; Heat shock 86 kDa; HSP 86; HSP86; Lipopolysaccharide-associated protein 2; LAP-2; LPS-associated protein 2; Renal carcinoma antigen NY-REN-38
Gene Name HSP90AA1
UniProt ID
HS90A_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1BYQ ; 1OSF ; 1UY6 ; 1UY7 ; 1UY8 ; 1UY9 ; 1UYC ; 1UYD ; 1UYE ; 1UYF ; 1UYG ; 1UYH ; 1UYI ; 1UYK ; 1UYL ; 1YC1 ; 1YC3 ; 1YC4 ; 1YER ; 1YES ; 1YET ; 2BSM ; 2BT0 ; 2BUG ; 2BYH ; 2BYI ; 2BZ5 ; 2C2L ; 2CCS ; 2CCT ; 2CCU ; 2FWY ; 2FWZ ; 2H55 ; 2JJC ; 2K5B ; 2QF6 ; 2QFO ; 2QG0 ; 2QG2 ; 2UWD ; 2VCI ; 2VCJ ; 2WI1 ; 2WI2 ; 2WI3 ; 2WI4 ; 2WI5 ; 2WI6 ; 2WI7 ; 2XAB ; 2XDK ; 2XDL ; 2XDS ; 2XDU ; 2XDX ; 2XHR ; 2XHT ; 2XHX ; 2XJG ; 2XJJ ; 2XJX ; 2XK2 ; 2YE2 ; 2YE3 ; 2YE4 ; 2YE5 ; 2YE6 ; 2YE7 ; 2YE8 ; 2YE9 ; 2YEA ; 2YEB ; 2YEC ; 2YED ; 2YEE ; 2YEF ; 2YEG ; 2YEH ; 2YEI ; 2YEJ ; 2YI0 ; 2YI5 ; 2YI6 ; 2YI7 ; 2YJW ; 2YJX ; 2YK2 ; 2YK9 ; 2YKB ; 2YKC ; 2YKE ; 2YKI ; 2YKJ ; 3B24 ; 3B25 ; 3B26 ; 3B27 ; 3B28 ; 3BM9 ; 3BMY ; 3D0B ; 3EKO ; 3EKR ; 3FT5 ; 3FT8 ; 3HEK ; 3HHU ; 3HYY ; 3HYZ ; 3HZ1 ; 3HZ5 ; 3INW ; 3INX ; 3K97 ; 3K98 ; 3K99 ; 3MNR ; 3O0I ; 3OW6 ; 3OWB ; 3OWD ; 3Q6M ; 3Q6N ; 3QDD ; 3QTF ; 3R4M ; 3R4N ; 3R4O ; 3R4P ; 3R91 ; 3R92 ; 3RKZ ; 3RLP ; 3RLQ ; 3RLR ; 3T0H ; 3T0Z ; 3T10 ; 3T1K ; 3T2S ; 3TUH ; 3VHA ; 3VHC ; 3VHD ; 3WHA ; 3WQ9 ; 4AIF ; 4AWO ; 4AWP ; 4AWQ ; 4B7P ; 4BQG ; 4BQJ ; 4CGQ ; 4CGU ; 4CGV ; 4CGW ; 4CWF ; 4CWN ; 4CWO ; 4CWP ; 4CWQ ; 4CWR ; 4CWS ; 4CWT ; 4EEH ; 4EFT ; 4EFU ; 4EGH ; 4EGI ; 4EGK ; 4FCP ; 4FCQ ; 4FCR ; 4HY6 ; 4JQL ; 4L8Z ; 4L90 ; 4L91 ; 4L93 ; 4L94 ; 4LWE ; 4LWF ; 4LWG ; 4LWH ; 4LWI ; 4NH7 ; 4NH8 ; 4O04 ; 4O05 ; 4O07 ; 4O09 ; 4O0B ; 4R3M ; 4U93 ; 4W7T ; 4XIP ; 4XIQ ; 4XIR ; 4XIT ; 4YKQ ; 4YKR ; 4YKT ; 4YKU ; 4YKW ; 4YKX ; 4YKY ; 4YKZ ; 5CF0 ; 5FNC ; 5FND ; 5FNF ; 5GGZ ; 5J20 ; 5J27 ; 5J2V ; 5J2X ; 5J64 ; 5J6L ; 5J6M ; 5J6N ; 5J80 ; 5J82 ; 5J86 ; 5J8M ; 5J8U ; 5J9X ; 5LNY ; 5LNZ ; 5LO0 ; 5LO1 ; 5LO5 ; 5LO6 ; 5LQ9 ; 5LR1 ; 5LR7 ; 5LRL ; 5LRZ ; 5LS1 ; 5M4E ; 5M4H ; 5NYH ; 5NYI ; 5OCI ; 5OD7 ; 5ODX ; 5T21 ; 5VYY ; 5XQD ; 5XQE ; 5XR5 ; 5XR9 ; 5XRB ; 5XRD ; 5XRE ; 5ZR3 ; 6B99 ; 6B9A ; 6CEO ; 6CYG ; 6CYH ; 6EI5 ; 6EL5 ; 6ELN ; 6ELO ; 6ELP ; 6EY8 ; 6EY9 ; 6EYA ; 6EYB ; 6F1N ; 6FCJ ; 6FDP ; 6GP4 ; 6GP8 ; 6GPF ; 6GPH ; 6GPO ; 6GPP ; 6GPR ; 6GPT ; 6GPW ; 6GPY ; 6GQ6 ; 6GQR ; 6GQS ; 6GQU ; 6GR1 ; 6GR3 ; 6GR4 ; 6GR5 ; 6HHR ; 6KSQ ; 6LR9 ; 6LSZ ; 6LT8 ; 6LTI ; 6LTK ; 6N8X ; 6OLX ; 6TN4 ; 6TN5 ; 6U98 ; 6U99 ; 6U9A ; 6U9B ; 7DMC ; 7KRJ ; 7KW7 ; 7L7I ; 7L7J ; 7LSZ ; 7LT0 ; 7RXZ ; 7RY0 ; 7RY1 ; 7S8Y ; 7S8Z ; 7S90 ; 7S95 ; 7S98 ; 7S99 ; 7S9F ; 7S9G ; 7S9H ; 7S9I ; 7UR3 ; 8AGI ; 8AGJ ; 8AGL ; 8B7I ; 8B7J ; 8FFV ; 8FFW ; 8X2R
EC Number
3.6.4.10
Pfam ID
PF13589 ; PF00183
Sequence
MPEETQTQDQPMEEEEVETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIR
YESLTDPSKLDSGKELHINLIPNKQDRTLTIVDTGIGMTKADLINNLGTIAKSGTKAFME
ALQAGADISMIGQFGVGFYSAYLVAEKVTVITKHNDDEQYAWESSAGGSFTVRTDTGEPM
GRGTKVILHLKEDQTEYLEERRIKEIVKKHSQFIGYPITLFVEKERDKEVSDDEAEEKED
KEEEKEKEEKESEDKPEIEDVGSDEEEEKKDGDKKKKKKIKEKYIDQEELNKTKPIWTRN
PDDITNEEYGEFYKSLTNDWEDHLAVKHFSVEGQLEFRALLFVPRRAPFDLFENRKKKNN
IKLYVRRVFIMDNCEELIPEYLNFIRGVVDSEDLPLNISREMLQQSKILKVIRKNLVKKC
LELFTELAEDKENYKKFYEQFSKNIKLGIHEDSQNRKKLSELLRYYTSASGDEMVSLKDY
CTRMKENQKHIYYITGETKDQVANSAFVERLRKHGLEVIYMIEPIDEYCVQQLKEFEGKT
LVSVTKEGLELPEDEEEKKKQEEKKTKFENLCKIMKDILEKKVEKVVVSNRLVTSPCCIV
TSTYGWTANMERIMKAQALRDNSTMGYMAAKKHLEINPDHSIIETLRQKAEADKNDKSVK
DLVILLYETALLSSGFSLEDPQTHANRIYRMIKLGLGIDEDDPTADDTSAAVTEEMPPLE
GDDDTSRMEEVD
Function
Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity which is essential for its chaperone activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function. Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself. Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle. Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70. Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels. In the first place, they alter the steady-state levels of certain transcription factors in response to various physiological cues. Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment. Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression. Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes. Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation. Mediates the association of TOMM70 with IRF3 or TBK1 in mitochondrial outer membrane which promotes host antiviral response ; (Microbial infection) Seems to interfere with N.meningitidis NadA-mediated invasion of human cells. Decreasing HSP90 levels increases adhesion and entry of E.coli expressing NadA into human Chang cells; increasing its levels leads to decreased adhesion and invasion.
KEGG Pathway
Protein processing in endoplasmic reticulum (hsa04141 )
PI3K-Akt sig.ling pathway (hsa04151 )
Necroptosis (hsa04217 )
Antigen processing and presentation (hsa04612 )
NOD-like receptor sig.ling pathway (hsa04621 )
IL-17 sig.ling pathway (hsa04657 )
Th17 cell differentiation (hsa04659 )
Progesterone-mediated oocyte maturation (hsa04914 )
Estrogen sig.ling pathway (hsa04915 )
Salmonella infection (hsa05132 )
Pathways in cancer (hsa05200 )
Chemical carcinogenesis - receptor activation (hsa05207 )
Prostate cancer (hsa05215 )
Lipid and atherosclerosis (hsa05417 )
Fluid shear stress and atherosclerosis (hsa05418 )
Reactome Pathway
Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants (R-HSA-1236382 )
Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation (R-HSA-1474151 )
DDX58/IFIH1-mediated induction of interferon-alpha/beta (R-HSA-168928 )
vRNP Assembly (R-HSA-192905 )
Regulation of actin dynamics for phagocytic cup formation (R-HSA-2029482 )
eNOS activation (R-HSA-203615 )
Regulation of PLK1 Activity at G2/M Transition (R-HSA-2565942 )
Scavenging by Class F Receptors (R-HSA-3000484 )
HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of ligand (R-HSA-3371497 )
HSF1 activation (R-HSA-3371511 )
Attenuation phase (R-HSA-3371568 )
HSF1-dependent transactivation (R-HSA-3371571 )
Loss of Nlp from mitotic centrosomes (R-HSA-380259 )
Recruitment of mitotic centrosome proteins and complexes (R-HSA-380270 )
Loss of proteins required for interphase microtubule organization from the centrosome (R-HSA-380284 )
Recruitment of NuMA to mitotic centrosomes (R-HSA-380320 )
Sema3A PAK dependent Axon repulsion (R-HSA-399954 )
VEGFA-VEGFR2 Pathway (R-HSA-4420097 )
VEGFR2 mediated vascular permeability (R-HSA-5218920 )
Uptake and function of diphtheria toxin (R-HSA-5336415 )
PIWI-interacting RNA (piRNA) biogenesis (R-HSA-5601884 )
Anchoring of the basal body to the plasma membrane (R-HSA-5620912 )
Constitutive Signaling by EGFRvIII (R-HSA-5637810 )
Regulation of necroptotic cell death (R-HSA-5675482 )
Interleukin-4 and Interleukin-13 signaling (R-HSA-6785807 )
Neutrophil degranulation (R-HSA-6798695 )
The role of GTSE1 in G2/M progression after G2 checkpoint (R-HSA-8852276 )
AURKA Activation by TPX2 (R-HSA-8854518 )
Downregulation of ERBB2 signaling (R-HSA-8863795 )
ESR-mediated signaling (R-HSA-8939211 )
Extra-nuclear estrogen signaling (R-HSA-9009391 )
RHOBTB2 GTPase cycle (R-HSA-9013418 )
Estrogen-dependent gene expression (R-HSA-9018519 )
Chaperone Mediated Autophagy (R-HSA-9613829 )
Constitutive Signaling by Overexpressed ERBB2 (R-HSA-9634285 )
Aggrephagy (R-HSA-9646399 )
Drug-mediated inhibition of ERBB2 signaling (R-HSA-9652282 )
Signaling by ERBB2 KD Mutants (R-HSA-9664565 )
Resistance of ERBB2 KD mutants to trastuzumab (R-HSA-9665233 )
Resistance of ERBB2 KD mutants to sapitinib (R-HSA-9665244 )
Resistance of ERBB2 KD mutants to tesevatinib (R-HSA-9665245 )
Resistance of ERBB2 KD mutants to neratinib (R-HSA-9665246 )
Resistance of ERBB2 KD mutants to osimertinib (R-HSA-9665247 )
Resistance of ERBB2 KD mutants to afatinib (R-HSA-9665249 )
Resistance of ERBB2 KD mutants to AEE788 (R-HSA-9665250 )
Resistance of ERBB2 KD mutants to lapatinib (R-HSA-9665251 )
Signaling by ERBB2 ECD mutants (R-HSA-9665348 )
Signaling by ERBB2 TMD/JMD mutants (R-HSA-9665686 )
Drug resistance in ERBB2 TMD/JMD mutants (R-HSA-9665737 )
Potential therapeutics for SARS (R-HSA-9679191 )
SARS-CoV-2 activates/modulates innate and adaptive immune responses (R-HSA-9705671 )
Signaling by ERBB2 (R-HSA-1227986 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
NVP-LAQ824 DM8JWNA Phase 3 Heat shock protein HSP 90-alpha (HSP90AA1) increases the Apoptosis ADR of NVP-LAQ824. [46]
Protoporphyrin IX DMWYE7A Investigative Heat shock protein HSP 90-alpha (HSP90AA1) decreases the response to substance of Protoporphyrin IX. [47]
------------------------------------------------------------------------------------
5 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Heat shock protein HSP 90-alpha (HSP90AA1). [1]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Heat shock protein HSP 90-alpha (HSP90AA1). [9]
TAK-243 DM4GKV2 Phase 1 TAK-243 decreases the sumoylation of Heat shock protein HSP 90-alpha (HSP90AA1). [27]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Heat shock protein HSP 90-alpha (HSP90AA1). [28]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of Heat shock protein HSP 90-alpha (HSP90AA1). [28]
------------------------------------------------------------------------------------
41 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [2]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [3]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [5]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [6]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [7]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [8]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [10]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [11]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [12]
Decitabine DMQL8XJ Approved Decitabine decreases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [13]
Marinol DM70IK5 Approved Marinol decreases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [14]
Selenium DM25CGV Approved Selenium decreases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [15]
Phenobarbital DMXZOCG Approved Phenobarbital decreases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [16]
Fulvestrant DM0YZC6 Approved Fulvestrant increases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [7]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [17]
Cannabidiol DM0659E Approved Cannabidiol increases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [18]
Bortezomib DMNO38U Approved Bortezomib decreases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [19]
Nicotine DMWX5CO Approved Nicotine increases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [20]
Simvastatin DM30SGU Approved Simvastatin increases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [21]
Thiopental DMGP8AX Approved Thiopental increases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [23]
Curcumin DMQPH29 Phase 3 Curcumin decreases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [24]
Tocopherol DMBIJZ6 Phase 2 Tocopherol decreases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [15]
ACYLINE DM9GRTK Phase 2 ACYLINE increases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [25]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [26]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN decreases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [29]
Celastrol DMWQIJX Preclinical Celastrol decreases the activity of Heat shock protein HSP 90-alpha (HSP90AA1). [30]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [31]
Trichostatin A DM9C8NX Investigative Trichostatin A affects the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [13]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [32]
chloropicrin DMSGBQA Investigative chloropicrin increases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [33]
Deguelin DMXT7WG Investigative Deguelin increases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [34]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A increases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [35]
methyl p-hydroxybenzoate DMO58UW Investigative methyl p-hydroxybenzoate increases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [36]
Glyphosate DM0AFY7 Investigative Glyphosate decreases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [37]
GALLICACID DM6Y3A0 Investigative GALLICACID decreases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [38]
QUERCITRIN DM1DH96 Investigative QUERCITRIN affects the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [40]
AHPN DM8G6O4 Investigative AHPN decreases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [41]
OXYBENZONE DMMZYX6 Investigative OXYBENZONE increases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [43]
Linalool DMGZQ5P Investigative Linalool increases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [44]
Paraoxon DMN4ZKC Investigative Paraoxon decreases the expression of Heat shock protein HSP 90-alpha (HSP90AA1). [45]
------------------------------------------------------------------------------------
⏷ Show the Full List of 41 Drug(s)
2 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
Gefitinib DM15F0X Approved Gefitinib increases the secretion of Heat shock protein HSP 90-alpha (HSP90AA1). [22]
4-hydroxy-2-nonenal DM2LJFZ Investigative 4-hydroxy-2-nonenal affects the binding of Heat shock protein HSP 90-alpha (HSP90AA1). [39]
------------------------------------------------------------------------------------
1 Drug(s) Affected the Biochemical Pathways of This DOT
Drug Name Drug ID Highest Status Interaction REF
cinnamaldehyde DMZDUXG Investigative cinnamaldehyde increases the metabolism of Heat shock protein HSP 90-alpha (HSP90AA1). [42]
------------------------------------------------------------------------------------

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
4 Inhibition of heat shock proteins (HSP) expression by quercetin and differential doxorubicin sensitization in neuroblastoma and Ewing's sarcoma cell lines. J Neurochem. 2007 Nov;103(4):1344-54. doi: 10.1111/j.1471-4159.2007.04835.x. Epub 2007 Aug 6.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
7 Arsenite and cadmium promote the development of mammary tumors. Carcinogenesis. 2020 Jul 14;41(7):1005-1014. doi: 10.1093/carcin/bgz176.
8 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
9 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
10 Quantitative proteomic analysis of HepG2 cells treated with quercetin suggests IQGAP1 involved in quercetin-induced regulation of cell proliferation and migration. OMICS. 2009 Apr;13(2):93-103. doi: 10.1089/omi.2008.0075.
11 Arsenic trioxide (As(2)O(3)) induced apoptosis and its mechanisms in a human esophageal squamous carcinoma cell line. Chin Med J (Engl). 2002 Feb;115(2):280-5.
12 Proteomic analysis revealed association of aberrant ROS signaling with suberoylanilide hydroxamic acid-induced autophagy in Jurkat T-leukemia cells. Autophagy. 2010 Aug;6(6):711-24. doi: 10.4161/auto.6.6.12397. Epub 2010 Aug 17.
13 Synergistic effect of trichostatin A and 5-aza-2'-deoxycytidine on growth inhibition of pancreatic endocrine tumour cell lines: a proteomic study. Proteomics. 2009 Apr;9(7):1952-66. doi: 10.1002/pmic.200701089.
14 Gene expression changes in human small airway epithelial cells exposed to Delta9-tetrahydrocannabinol. Toxicol Lett. 2005 Aug 14;158(2):95-107.
15 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
16 Proteomic analysis of hepatic effects of phenobarbital in mice with humanized liver. Arch Toxicol. 2022 Oct;96(10):2739-2754. doi: 10.1007/s00204-022-03338-7. Epub 2022 Jul 26.
17 Effect of topical Ginkgo biloba extract on steroid-induced changes in the trabecular meshwork and intraocular pressure. Arch Ophthalmol. 2008 Dec;126(12):1700-6. doi: 10.1001/archophthalmol.2008.512.
18 Cannabidiol Modulates the Immunophenotype and Inhibits the Activation of the Inflammasome in Human Gingival Mesenchymal Stem Cells. Front Physiol. 2016 Nov 24;7:559. doi: 10.3389/fphys.2016.00559. eCollection 2016.
19 Synergistic antiproliferative effect of arsenic trioxide combined with bortezomib in HL60 cell line and primary blasts from patients affected by myeloproliferative disorders. Cancer Genet Cytogenet. 2010 Jun;199(2):110-20. doi: 10.1016/j.cancergencyto.2010.02.010.
20 Involvement of human heat shock protein 90 alpha in nicotine-induced apoptosis. Int J Cancer. 2002 Jul 1;100(1):37-42. doi: 10.1002/ijc.10449.
21 Simvastatin induces heat shock factor 1 in vascular endothelial cells. Atherosclerosis. 2006 Oct;188(2):265-73. doi: 10.1016/j.atherosclerosis.2005.10.045. Epub 2005 Dec 20.
22 Reactive metabolite of gefitinib activates inflammasomes: implications for gefitinib-induced idiosyncratic reaction. J Toxicol Sci. 2020;45(11):673-680. doi: 10.2131/jts.45.673.
23 Thiopental protects human T lymphocytes from apoptosis in vitro via the expression of heat shock protein 70. J Pharmacol Exp Ther. 2008 Apr;325(1):217-25. doi: 10.1124/jpet.107.133108. Epub 2008 Jan 24.
24 Novel carbocyclic curcumin analog CUR3d modulates genes involved in multiple apoptosis pathways in human hepatocellular carcinoma cells. Chem Biol Interact. 2015 Dec 5;242:107-22.
25 Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res. 2007 May 15;67(10):5033-41.
26 Gene expression profiling in Caco-2 human colon cells exposed to TCDD, benzo[a]pyrene, and natural Ah receptor agonists from cruciferous vegetables and citrus fruits. Toxicol In Vitro. 2008 Mar;22(2):396-410.
27 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
28 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
29 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
30 Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. Cancer Cell. 2006 Oct;10(4):321-30.
31 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730. doi: 10.1016/j.envint.2021.106730. Epub 2021 Jun 27.
32 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
33 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
34 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
35 Lipid Rafts Disruption Increases Ochratoxin A Cytotoxicity to Hepatocytes. J Biochem Mol Toxicol. 2016 Feb;30(2):71-9. doi: 10.1002/jbt.21738. Epub 2015 Aug 25.
36 Transcriptome dynamics of alternative splicing events revealed early phase of apoptosis induced by methylparaben in H1299 human lung carcinoma cells. Arch Toxicol. 2020 Jan;94(1):127-140. doi: 10.1007/s00204-019-02629-w. Epub 2019 Nov 20.
37 Glyphosate-based herbicides at low doses affect canonical pathways in estrogen positive and negative breast cancer cell lines. PLoS One. 2019 Jul 11;14(7):e0219610. doi: 10.1371/journal.pone.0219610. eCollection 2019.
38 Gene expression profile analysis of gallic acid-induced cell death process. Sci Rep. 2021 Aug 18;11(1):16743. doi: 10.1038/s41598-021-96174-1.
39 Identification of protein targets of 4-hydroxynonenal using click chemistry for ex vivo biotinylation of azido and alkynyl derivatives. Chem Res Toxicol. 2008 Feb;21(2):432-44. doi: 10.1021/tx700347w. Epub 2008 Jan 31.
40 Molecular mechanisms of quercitrin-induced apoptosis in non-small cell lung cancer. Arch Med Res. 2014 Aug;45(6):445-54.
41 ST1926, a novel and orally active retinoid-related molecule inducing apoptosis in myeloid leukemia cells: modulation of intracellular calcium homeostasis. Blood. 2004 Jan 1;103(1):194-207.
42 Determination of Protein Haptenation by Chemical Sensitizers Within the Complexity of the Human Skin Proteome. Toxicol Sci. 2018 Apr 1;162(2):429-438. doi: 10.1093/toxsci/kfx265.
43 Chromatin modifiers: A new class of pollutants with potential epigenetic effects revealed by in vitro assays and transcriptomic analyses. Toxicology. 2023 Jan 15;484:153413. doi: 10.1016/j.tox.2022.153413. Epub 2022 Dec 26.
44 Linalool preferentially induces robust apoptosis of a variety of leukemia cells via upregulating p53 and cyclin-dependent kinase inhibitors. Toxicology. 2010 Jan 31;268(1-2):19-24. doi: 10.1016/j.tox.2009.11.013. Epub 2009 Nov 14.
45 Paraoxon-induced protein expression changes to SH-SY5Y cells. Chem Res Toxicol. 2010 Nov 15;23(11):1656-62. doi: 10.1021/tx100192f. Epub 2010 Oct 8.
46 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.
47 Structural requirements within protoporphyrin IX in the inhibition of heat shock protein 90. Chem Biol Interact. 2013 Jun 25;204(1):49-57. doi: 10.1016/j.cbi.2013.04.006. Epub 2013 Apr 24.