General Information of Drug Off-Target (DOT) (ID: OTSYF511)

DOT Name Terminal nucleotidyltransferase 5A (TENT5A)
Synonyms EC 2.7.7.19; HBV X-transactivated gene 11 protein; HBV XAg-transactivated protein 11
Gene Name TENT5A
Related Disease
Advanced cancer ( )
Breast cancer ( )
Breast carcinoma ( )
Glioma ( )
Knee osteoarthritis ( )
Non-small-cell lung cancer ( )
Osteoarthritis ( )
Osteogenesis imperfecta type 3 ( )
Osteogenesis imperfecta, type 18 ( )
Retinitis pigmentosa ( )
Coronary heart disease ( )
Retinopathy ( )
Osteogenesis imperfecta ( )
Tuberculosis ( )
Colorectal adenoma ( )
UniProt ID
TET5A_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
8EXE; 8EXF
EC Number
2.7.7.19
Pfam ID
PF07984
Sequence
MAEGEGYFAMSEDELACSPYIPLGGDFGGGDFGGGDFGGGDFGGGGSFGGHCLDYCESPT
AHCNVLNWEQVQRLDGILSETIPIHGRGNFPTLELQPSLIVKVVRRRLAEKRIGVRDVRL
NGSAASHVLHQDSGLGYKDLDLIFCADLRGEGEFQTVKDVVLDCLLDFLPEGVNKEKITP
LTLKEAYVQKMVKVCNDSDRWSLISLSNNSGKNVELKFVDSLRRQFEFSVDSFQIKLDSL
LLFYECSENPMTETFHPTIIGESVYGDFQEAFDHLCNKIIATRNPEEIRGGGLLKYCNLL
VRGFRPASDEIKTLQRYMCSRFFIDFSDIGEQQRKLESYLQNHFVGLEDRKYEYLMTLHG
VVNESTVCLMGHERRQTLNLITMLAIRVLADQNVIPNVANVTCYYQPAPYVADANFSNYY
IAQVQPVFTCQQQTYSTWLPCN
Function
Cytoplasmic non-canonical poly(A) RNA polymerase that catalyzes the transfer of one adenosine molecule from an ATP to an mRNA poly(A) tail bearing a 3'-OH terminal group and participates in the cytoplasmic polyadenylation. Polyadenylates mRNA encoding extracellular matrix constituents and other genes crucial for bone mineralization and during osteoblast mineralization, mainly focuses on ER-targeted mRNAs.
Tissue Specificity Widely expressed, with preferential expression observed in the retina compared to other ocular tissues . Also expressed in osteoblasts .

Molecular Interaction Atlas (MIA) of This DOT

15 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Advanced cancer DISAT1Z9 Strong Biomarker [1]
Breast cancer DIS7DPX1 Strong Genetic Variation [2]
Breast carcinoma DIS2UE88 Strong Genetic Variation [3]
Glioma DIS5RPEH Strong Biomarker [1]
Knee osteoarthritis DISLSNBJ Strong Biomarker [4]
Non-small-cell lung cancer DIS5Y6R9 Strong Genetic Variation [5]
Osteoarthritis DIS05URM Strong Genetic Variation [4]
Osteogenesis imperfecta type 3 DISFJVSJ Strong Genetic Variation [6]
Osteogenesis imperfecta, type 18 DISHRP21 Strong Autosomal recessive [7]
Retinitis pigmentosa DISCGPY8 Strong Genetic Variation [8]
Coronary heart disease DIS5OIP1 moderate Genetic Variation [9]
Retinopathy DISB4B0F moderate Biomarker [10]
Osteogenesis imperfecta DIS7XQSD Supportive Autosomal dominant [6]
Tuberculosis DIS2YIMD Disputed Altered Expression [11]
Colorectal adenoma DISTSVHM Limited Altered Expression [12]
------------------------------------------------------------------------------------
⏷ Show the Full List of 15 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Etoposide DMNH3PG Approved Terminal nucleotidyltransferase 5A (TENT5A) affects the response to substance of Etoposide. [34]
Mitomycin DMH0ZJE Approved Terminal nucleotidyltransferase 5A (TENT5A) affects the response to substance of Mitomycin. [34]
------------------------------------------------------------------------------------
23 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Terminal nucleotidyltransferase 5A (TENT5A). [13]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Terminal nucleotidyltransferase 5A (TENT5A). [14]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Terminal nucleotidyltransferase 5A (TENT5A). [15]
Acetaminophen DMUIE76 Approved Acetaminophen affects the expression of Terminal nucleotidyltransferase 5A (TENT5A). [16]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Terminal nucleotidyltransferase 5A (TENT5A). [17]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Terminal nucleotidyltransferase 5A (TENT5A). [18]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Terminal nucleotidyltransferase 5A (TENT5A). [19]
Quercetin DM3NC4M Approved Quercetin increases the expression of Terminal nucleotidyltransferase 5A (TENT5A). [20]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Terminal nucleotidyltransferase 5A (TENT5A). [21]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide decreases the expression of Terminal nucleotidyltransferase 5A (TENT5A). [22]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Terminal nucleotidyltransferase 5A (TENT5A). [23]
Progesterone DMUY35B Approved Progesterone increases the expression of Terminal nucleotidyltransferase 5A (TENT5A). [24]
Niclosamide DMJAGXQ Approved Niclosamide decreases the expression of Terminal nucleotidyltransferase 5A (TENT5A). [25]
Cytarabine DMZD5QR Approved Cytarabine decreases the expression of Terminal nucleotidyltransferase 5A (TENT5A). [26]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Terminal nucleotidyltransferase 5A (TENT5A). [27]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Terminal nucleotidyltransferase 5A (TENT5A). [13]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Terminal nucleotidyltransferase 5A (TENT5A). [14]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Terminal nucleotidyltransferase 5A (TENT5A). [28]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Terminal nucleotidyltransferase 5A (TENT5A). [29]
Torcetrapib DMDHYM7 Discontinued in Phase 2 Torcetrapib increases the expression of Terminal nucleotidyltransferase 5A (TENT5A). [30]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Terminal nucleotidyltransferase 5A (TENT5A). [31]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Terminal nucleotidyltransferase 5A (TENT5A). [32]
chloropicrin DMSGBQA Investigative chloropicrin increases the expression of Terminal nucleotidyltransferase 5A (TENT5A). [33]
------------------------------------------------------------------------------------
⏷ Show the Full List of 23 Drug(s)

References

1 Identification of the potential biomarkers in patients with glioma: a weighted gene co-expression network analysis.Carcinogenesis. 2020 Jul 10;41(6):743-750. doi: 10.1093/carcin/bgz194.
2 Evaluating genome-wide association study-identified breast cancer risk variants in African-American women.PLoS One. 2013 Apr 8;8(4):e58350. doi: 10.1371/journal.pone.0058350. Print 2013.
3 Association analysis identifies 65 new breast cancer risk loci.Nature. 2017 Nov 2;551(7678):92-94. doi: 10.1038/nature24284. Epub 2017 Oct 23.
4 Susceptibility to large-joint osteoarthritis (hip and knee) is associated with BAG6 rs3117582 SNP and the VNTR polymorphism in the second exon of the FAM46A gene on chromosome 6.J Orthop Res. 2015 Jan;33(1):56-62. doi: 10.1002/jor.22738. Epub 2014 Sep 18.
5 Association of the FAM46A gene VNTRs and BAG6 rs3117582 SNP with non small cell lung cancer (NSCLC) in Croatian and Norwegian populations.PLoS One. 2015 Apr 17;10(4):e0122651. doi: 10.1371/journal.pone.0122651. eCollection 2015.
6 FAM46A mutations are responsible for autosomal recessive osteogenesis imperfecta. J Med Genet. 2018 Apr;55(4):278-284. doi: 10.1136/jmedgenet-2017-104999. Epub 2018 Jan 22.
7 [Meal-time training of children with cerebral palsy]. Kango Gijutsu. 1977 Dec;23(16):55-66.
8 Genetic analysis of FAM46A in Spanish families with autosomal recessive retinitis pigmentosa: characterisation of novel VNTRs.Ann Hum Genet. 2008 Jan;72(Pt 1):26-34. doi: 10.1111/j.1469-1809.2007.00393.x. Epub 2007 Sep 5.
9 Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies.Nat Genet. 2018 Sep;50(9):1335-1341. doi: 10.1038/s41588-018-0184-y. Epub 2018 Aug 13.
10 Identification and characterization of C6orf37, a novel candidate human retinal disease gene on chromosome 6q14.Biochem Biophys Res Commun. 2002 Apr 26;293(1):356-65. doi: 10.1016/S0006-291X(02)00228-0.
11 Association of variable number of tandem repeats in the coding region of the FAM46A gene, FAM46A rs11040 SNP and BAG6 rs3117582 SNP with susceptibility to tuberculosis.PLoS One. 2014 Mar 13;9(3):e91385. doi: 10.1371/journal.pone.0091385. eCollection 2014.
12 Identification of a novel VNTR polymorphism in C6orf37 and its association with colorectal cancer risk in Chinese population.Clin Chim Acta. 2006 Jun;368(1-2):155-9. doi: 10.1016/j.cca.2005.12.043. Epub 2006 Mar 20.
13 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
14 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
15 Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. Proc Natl Acad Sci U S A. 2005 May 24;102(21):7653-8.
16 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
17 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
18 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
19 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
20 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
21 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
22 Oxidative stress modulates theophylline effects on steroid responsiveness. Biochem Biophys Res Commun. 2008 Dec 19;377(3):797-802.
23 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
24 Effects of progesterone treatment on expression of genes involved in uterine quiescence. Reprod Sci. 2011 Aug;18(8):781-97.
25 Mitochondrial Uncoupling Induces Epigenome Remodeling and Promotes Differentiation in Neuroblastoma. Cancer Res. 2023 Jan 18;83(2):181-194. doi: 10.1158/0008-5472.CAN-22-1029.
26 Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br J Pharmacol. 2011 Apr;162(8):1743-56.
27 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
28 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
29 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
30 Clarifying off-target effects for torcetrapib using network pharmacology and reverse docking approach. BMC Syst Biol. 2012 Dec 10;6:152.
31 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
32 Identification of gene markers for formaldehyde exposure in humans. Environ Health Perspect. 2007 Oct;115(10):1460-6. doi: 10.1289/ehp.10180.
33 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
34 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.