General Information of Drug Off-Target (DOT) (ID: OTWKTPGC)

DOT Name Tryptophan--tRNA ligase, cytoplasmic
Synonyms EC 6.1.1.2; Interferon-induced protein 53; IFP53; Tryptophanyl-tRNA synthetase; TrpRS; hWRS
Gene Name WARS1
Related Disease
Neuronopathy, distal hereditary motor, type 9 ( )
Distal hereditary motor neuropathy ( )
UniProt ID
SYWC_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1O5T; 1R6T; 1R6U; 1ULH; 2AKE; 2AZX; 2DR2; 2QUH; 2QUI; 2QUJ; 2QUK; 5UJI; 5UJJ
EC Number
6.1.1.2
Pfam ID
PF00579 ; PF00458
Sequence
MPNSEPASLLELFNSIATQGELVRSLKAGNASKDEIDSAVKMLVSLKMSYKAAAGEDYKA
DCPPGNPAPTSNHGPDATEAEEDFVDPWTVQTSSAKGIDYDKLIVRFGSSKIDKELINRI
ERATGQRPHHFLRRGIFFSHRDMNQVLDAYENKKPFYLYTGRGPSSEAMHVGHLIPFIFT
KWLQDVFNVPLVIQMTDDEKYLWKDLTLDQAYSYAVENAKDIIACGFDINKTFIFSDLDY
MGMSSGFYKNVVKIQKHVTFNQVKGIFGFTDSDCIGKISFPAIQAAPSFSNSFPQIFRDR
TDIQCLIPCAIDQDPYFRMTRDVAPRIGYPKPALLHSTFFPALQGAQTKMSASDPNSSIF
LTDTAKQIKTKVNKHAFSGGRDTIEEHRQFGGNCDVDVSFMYLTFFLEDDDKLEQIRKDY
TSGAMLTGELKKALIEVLQPLIAEHQARRKEVTDEIVKEFMTPRKLSFDFQ
Function
Catalyzes the attachment of tryptophan to tRNA(Trp) in a two-step reaction: tryptophan is first activated by ATP to form Trp-AMP and then transferred to the acceptor end of the tRNA(Trp); [Isoform 1]: Has no angiostatic activity; [T2-TrpRS]: Possesses an angiostatic activity but has no aminoacylation activity. Inhibits fluid shear stress-activated responses of endothelial cells. Regulates ERK, Akt, and eNOS activation pathways that are associated with angiogenesis, cytoskeletal reorganization and shear stress-responsive gene expression ; [Isoform 2]: Has an angiostatic activity.
KEGG Pathway
Aminoacyl-tR. biosynthesis (hsa00970 )
Reactome Pathway
Cytosolic tRNA aminoacylation (R-HSA-379716 )

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Neuronopathy, distal hereditary motor, type 9 DIS2OBPK Strong Autosomal dominant [1]
Distal hereditary motor neuropathy DISGS2ID Limited Autosomal dominant [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Mitoxantrone DMM39BF Approved Tryptophan--tRNA ligase, cytoplasmic affects the response to substance of Mitoxantrone. [32]
------------------------------------------------------------------------------------
37 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Tryptophan--tRNA ligase, cytoplasmic. [3]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Tryptophan--tRNA ligase, cytoplasmic. [4]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Tryptophan--tRNA ligase, cytoplasmic. [5]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Tryptophan--tRNA ligase, cytoplasmic. [6]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Tryptophan--tRNA ligase, cytoplasmic. [7]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Tryptophan--tRNA ligase, cytoplasmic. [8]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Tryptophan--tRNA ligase, cytoplasmic. [9]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Tryptophan--tRNA ligase, cytoplasmic. [10]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Tryptophan--tRNA ligase, cytoplasmic. [11]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Tryptophan--tRNA ligase, cytoplasmic. [12]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Tryptophan--tRNA ligase, cytoplasmic. [13]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Tryptophan--tRNA ligase, cytoplasmic. [14]
Marinol DM70IK5 Approved Marinol decreases the expression of Tryptophan--tRNA ligase, cytoplasmic. [15]
Dexamethasone DMMWZET Approved Dexamethasone decreases the expression of Tryptophan--tRNA ligase, cytoplasmic. [16]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol increases the expression of Tryptophan--tRNA ligase, cytoplasmic. [10]
Aspirin DM672AH Approved Aspirin decreases the expression of Tryptophan--tRNA ligase, cytoplasmic. [17]
Piroxicam DMTK234 Approved Piroxicam decreases the expression of Tryptophan--tRNA ligase, cytoplasmic. [18]
Cidofovir DMA13GD Approved Cidofovir increases the expression of Tryptophan--tRNA ligase, cytoplasmic. [9]
Ifosfamide DMCT3I8 Approved Ifosfamide increases the expression of Tryptophan--tRNA ligase, cytoplasmic. [9]
Clodronate DM9Y6X7 Approved Clodronate affects the expression of Tryptophan--tRNA ligase, cytoplasmic. [9]
Bicalutamide DMZMSPF Approved Bicalutamide increases the expression of Tryptophan--tRNA ligase, cytoplasmic. [19]
Vitamin C DMXJ7O8 Approved Vitamin C decreases the expression of Tryptophan--tRNA ligase, cytoplasmic. [20]
Estrone DM5T6US Approved Estrone increases the expression of Tryptophan--tRNA ligase, cytoplasmic. [10]
Estriol DMOEM2I Approved Estriol increases the expression of Tryptophan--tRNA ligase, cytoplasmic. [10]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Tryptophan--tRNA ligase, cytoplasmic. [21]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the expression of Tryptophan--tRNA ligase, cytoplasmic. [22]
Tamibarotene DM3G74J Phase 3 Tamibarotene increases the expression of Tryptophan--tRNA ligase, cytoplasmic. [5]
Fenretinide DMRD5SP Phase 3 Fenretinide increases the expression of Tryptophan--tRNA ligase, cytoplasmic. [23]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Tryptophan--tRNA ligase, cytoplasmic. [10]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Tryptophan--tRNA ligase, cytoplasmic. [25]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN increases the expression of Tryptophan--tRNA ligase, cytoplasmic. [26]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Tryptophan--tRNA ligase, cytoplasmic. [27]
Deguelin DMXT7WG Investigative Deguelin increases the expression of Tryptophan--tRNA ligase, cytoplasmic. [28]
GALLICACID DM6Y3A0 Investigative GALLICACID increases the expression of Tryptophan--tRNA ligase, cytoplasmic. [29]
[3H]methyltrienolone DMTSGOW Investigative [3H]methyltrienolone increases the expression of Tryptophan--tRNA ligase, cytoplasmic. [30]
ELLAGIC ACID DMX8BS5 Investigative ELLAGIC ACID increases the expression of Tryptophan--tRNA ligase, cytoplasmic. [22]
AM251 DMTAWHL Investigative AM251 increases the expression of Tryptophan--tRNA ligase, cytoplasmic. [31]
------------------------------------------------------------------------------------
⏷ Show the Full List of 37 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Tryptophan--tRNA ligase, cytoplasmic. [24]
------------------------------------------------------------------------------------

References

1 A recurrent WARS mutation is a novel cause of autosomal dominant distal hereditary motor neuropathy. Brain. 2017 May 1;140(5):1252-1266. doi: 10.1093/brain/awx058.
2 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
3 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
4 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
5 Differential modulation of PI3-kinase/Akt pathway during all-trans retinoic acid- and Am80-induced HL-60 cell differentiation revealed by DNA microarray analysis. Biochem Pharmacol. 2004 Dec 1;68(11):2177-86.
6 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
7 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
8 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
9 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
10 Using a customized DNA microarray for expression profiling of the estrogen-responsive genes to evaluate estrogen activity among natural estrogens and industrial chemicals. Environ Health Perspect. 2004 May;112(7):773-81. doi: 10.1289/ehp.6753.
11 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
12 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
13 Proteomic and functional analyses reveal a dual molecular mechanism underlying arsenic-induced apoptosis in human multiple myeloma cells. J Proteome Res. 2009 Jun;8(6):3006-19.
14 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
15 JunD is involved in the antiproliferative effect of Delta9-tetrahydrocannabinol on human breast cancer cells. Oncogene. 2008 Aug 28;27(37):5033-44.
16 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
17 Expression profile analysis of colon cancer cells in response to sulindac or aspirin. Biochem Biophys Res Commun. 2002 Mar 29;292(2):498-512.
18 Apoptosis induced by piroxicam plus cisplatin combined treatment is triggered by p21 in mesothelioma. PLoS One. 2011;6(8):e23569.
19 Microarray analysis of bicalutamide action on telomerase activity, p53 pathway and viability of prostate carcinoma cell lines. J Pharm Pharmacol. 2005 Jan;57(1):83-92.
20 Antiproliferative effect of ascorbic acid is associated with the inhibition of genes necessary to cell cycle progression. PLoS One. 2009;4(2):e4409.
21 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
22 Interactive gene expression pattern in prostate cancer cells exposed to phenolic antioxidants. Life Sci. 2002 Mar 1;70(15):1821-39.
23 Regulation of lipocalin-2 gene by the cancer chemopreventive retinoid 4-HPR. Int J Cancer. 2006 Oct 1;119(7):1599-606.
24 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
25 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
26 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
27 Epigenetic influences of low-dose bisphenol A in primary human breast epithelial cells. Toxicol Appl Pharmacol. 2010 Oct 15;248(2):111-21.
28 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
29 Gene expression profile analysis of gallic acid-induced cell death process. Sci Rep. 2021 Aug 18;11(1):16743. doi: 10.1038/s41598-021-96174-1.
30 Evaluation of an in vitro model of androgen ablation and identification of the androgen responsive proteome in LNCaP cells. Proteomics. 2007 Jan;7(1):47-63.
31 Cannabinoid derivatives induce cell death in pancreatic MIA PaCa-2 cells via a receptor-independent mechanism. FEBS Lett. 2006 Mar 20;580(7):1733-9.
32 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.