General Information of Drug Combination (ID: DCXUMGU)

Drug Combination Name
LY2835219 Crizotinib
Indication
Disease Entry Status REF
Diffuse intrinsic pontine glioma Investigative [1]
Component Drugs LY2835219   DM93VBZ Crizotinib   DM4F29C
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL is unavailable 3D MOL
High-throughput Screening Result Testing Cell Line: DIPG25
Zero Interaction Potency (ZIP) Score: 0.01
Bliss Independence Score: 6.51
Loewe Additivity Score: 0.15
LHighest Single Agent (HSA) Score: 3.37

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of LY2835219
Disease Entry ICD 11 Status REF
Breast cancer 2C60-2C65 Approved [2]
Solid tumour/cancer 2A00-2F9Z Phase 3 [3]
LY2835219 Interacts with 2 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Cyclin-dependent kinase 4 (CDK4) TT0PG8F CDK4_HUMAN Modulator [6]
Cyclin-dependent kinase 6 (CDK6) TTO0FDJ CDK6_HUMAN Modulator [6]
------------------------------------------------------------------------------------
LY2835219 Interacts with 3 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
Organic cation transporter 2 (SLC22A2) DT9IDPW S22A2_HUMAN Substrate [7]
Multidrug and toxin extrusion protein 1 (SLC47A1) DTZGT0P S47A1_HUMAN Substrate [7]
Multidrug and toxin extrusion protein 2 (SLC47A2) DT3TX4H S47A2_HUMAN Substrate [7]
------------------------------------------------------------------------------------
LY2835219 Interacts with 1 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [8]
------------------------------------------------------------------------------------
LY2835219 Interacts with 27 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Tripeptidyl-peptidase 1 (TPP1) OT2LQ771 TPP1_HUMAN Increases Expression [5]
Glutaminase kidney isoform, mitochondrial (GLS) OTGOZG2M GLSK_HUMAN Increases Expression [5]
G2/mitotic-specific cyclin-B2 (CCNB2) OTIEXTDK CCNB2_HUMAN Decreases Expression [5]
Securin (PTTG1) OTIMYS4W PTTG1_HUMAN Decreases Expression [5]
G1/S-specific cyclin-E2 (CCNE2) OTBBUKQQ CCNE2_HUMAN Decreases Expression [9]
Apolipoprotein E (APOE) OTFOWL2H APOE_HUMAN Increases Expression [5]
Fibrinogen beta chain (FGB) OT6RKLI9 FIBB_HUMAN Decreases Expression [5]
Fibrinogen gamma chain (FGG) OT5BJSEX FIBG_HUMAN Decreases Expression [5]
N-myc proto-oncogene protein (MYCN) OTWD33K1 MYCN_HUMAN Decreases Expression [5]
Retinoblastoma-associated protein (RB1) OTQJUJMZ RB_HUMAN Decreases Expression [9]
ATP-dependent translocase ABCB1 (ABCB1) OTEJROBO MDR1_HUMAN Decreases Activity [10]
Gamma-enolase (ENO2) OTRODL0T ENOG_HUMAN Increases Expression [5]
SPARC (SPARC) OTPN90H0 SPRC_HUMAN Increases Expression [5]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Affects Expression [11]
Cyclin-A2 (CCNA2) OTPHHYZJ CCNA2_HUMAN Decreases Expression [9]
G1/S-specific cyclin-D1 (CCND1) OT8HPTKJ CCND1_HUMAN Affects Expression [11]
Cyclin-dependent kinase inhibitor 1 (CDKN1A) OTQWHCZE CDN1A_HUMAN Increases Expression [5]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Expression [11]
Ran-specific GTPase-activating protein (RANBP1) OTQE226K RANG_HUMAN Decreases Expression [5]
Proliferation marker protein Ki-67 (MKI67) OTA8N1QI KI67_HUMAN Decreases Expression [5]
Apoptosis regulator BAX (BAX) OTAW0V4V BAX_HUMAN Affects Expression [11]
Ephrin-B3 (EFNB3) OT12WTXQ EFNB3_HUMAN Decreases Expression [5]
Insulin growth factor-like family member 2 (IGFL2) OT64M0K7 IGFL2_HUMAN Increases Expression [5]
BRCA1-associated RING domain protein 1 (BARD1) OTTC0Z9Y BARD1_HUMAN Decreases Expression [5]
Fanconi anemia group E protein (FANCE) OTKRPBW1 FANCE_HUMAN Decreases Expression [5]
Broad substrate specificity ATP-binding cassette transporter ABCG2 (ABCG2) OTW8V2V1 ABCG2_HUMAN Decreases Activity [10]
Transforming acidic coiled-coil-containing protein 3 (TACC3) OTRNEZTA TACC3_HUMAN Decreases Expression [5]
------------------------------------------------------------------------------------
⏷ Show the Full List of 27 DOT(s)
Indication(s) of Crizotinib
Disease Entry ICD 11 Status REF
Non-small-cell lung cancer 2C25.Y Approved [4]
Crizotinib Interacts with 4 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Proto-oncogene c-Met (MET) TTNDSF4 MET_HUMAN Modulator [15]
ALK tyrosine kinase receptor (ALK) TTPMQSO ALK_HUMAN Modulator [15]
Proto-oncogene c-Ros (ROS1) TTSZ6Y3 ROS1_HUMAN Modulator [15]
HGF/Met signaling pathway (HGF/Met pathway) TTKA5LP NOUNIPROTAC Inhibitor [16]
------------------------------------------------------------------------------------
Crizotinib Interacts with 3 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [17]
Organic anion transporting polypeptide 1B1 (SLCO1B1) DT3D8F0 SO1B1_HUMAN Substrate [18]
Organic anion transporting polypeptide 1B3 (SLCO1B3) DT9C1TS SO1B3_HUMAN Substrate [18]
------------------------------------------------------------------------------------
Crizotinib Interacts with 2 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [19]
Cytochrome P450 3A5 (CYP3A5) DEIBDNY CP3A5_HUMAN Metabolism [19]
------------------------------------------------------------------------------------
Crizotinib Interacts with 45 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) OTQGYY83 CP3A4_HUMAN Increases Expression [20]
ATP-dependent translocase ABCB1 (ABCB1) OTEJROBO MDR1_HUMAN Decreases Activity [21]
Hepatocyte growth factor receptor (MET) OT7K55MU MET_HUMAN Increases Response To Substance [13]
ALK tyrosine kinase receptor (ALK) OTV3P4V8 ALK_HUMAN Decreases Response To Substance [22]
Prominin-1 (PROM1) OTBHV8NX PROM1_HUMAN Decreases Expression [12]
CD44 antigen (CD44) OT9TTJ41 CD44_HUMAN Decreases Expression [12]
Epithelial cell adhesion molecule (EPCAM) OTHBZK5X EPCAM_HUMAN Decreases Expression [12]
Cytidine deaminase (CDA) OT3HXP6N CDD_HUMAN Decreases Expression [12]
Insulin-induced gene 1 protein (INSIG1) OTZF5X1D INSI1_HUMAN Increases Expression [23]
Acyl-CoA 6-desaturase (FADS2) OTUX531P FADS2_HUMAN Increases Expression [23]
3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) OTRT3F3U HMDH_HUMAN Increases Expression [23]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Activity [23]
Fatty acid synthase (FASN) OTFII9KG FAS_HUMAN Increases Expression [23]
Caspase-7 (CASP7) OTAPJ040 CASP7_HUMAN Increases Activity [23]
Hydroxymethylglutaryl-CoA synthase, cytoplasmic (HMGCS1) OTCO26FV HMCS1_HUMAN Increases Expression [23]
Sterol regulatory element-binding protein 2 (SREBF2) OTBXUNPL SRBP2_HUMAN Increases Expression [23]
Potassium voltage-gated channel subfamily H member 2 (KCNH2) OTZX881H KCNH2_HUMAN Decreases Activity [23]
Acetyl-CoA carboxylase 1 (ACACA) OT5CQPZY ACACA_HUMAN Increases Phosphorylation [23]
Voltage-dependent L-type calcium channel subunit alpha-1C (CACNA1C) OT6KFNMS CAC1C_HUMAN Decreases Activity [23]
Sodium channel protein type 5 subunit alpha (SCN5A) OTGYZWR6 SCN5A_HUMAN Decreases Activity [23]
Baculoviral IAP repeat-containing protein 5 (BIRC5) OTILXZYL BIRC5_HUMAN Decreases Expression [13]
Bcl-2-like protein 11 (BCL2L11) OTNQQWFJ B2L11_HUMAN Increases Expression [13]
Follitropin subunit beta (FSHB) OTGLS283 FSHB_HUMAN Decreases Secretion [24]
Lutropin subunit beta (LHB) OT5GBOVJ LSHB_HUMAN Decreases Secretion [24]
Tyrosine-protein kinase Lck (LCK) OT883FG9 LCK_HUMAN Decreases Activity [25]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Increases Cleavage [26]
Tissue factor (F3) OT3MSU3B TF_HUMAN Increases Expression [27]
Histone H2AX (H2AX) OT18UX57 H2AX_HUMAN Increases Phosphorylation [26]
Alanine aminotransferase 1 (GPT) OTOXOA0Q ALAT1_HUMAN Increases Secretion [28]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Decreases Phosphorylation [29]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Decreases Phosphorylation [29]
RAC-alpha serine/threonine-protein kinase (AKT1) OT8H2YY7 AKT1_HUMAN Decreases Phosphorylation [30]
Signal transducer and activator of transcription 3 (STAT3) OTAAGKYZ STAT3_HUMAN Decreases Phosphorylation [31]
Ras GTPase-activating-like protein IQGAP1 (IQGAP1) OTZRWTGA IQGA1_HUMAN Decreases Phosphorylation [32]
Small ribosomal subunit protein eS6 (RPS6) OTT4D1LN RS6_HUMAN Decreases Phosphorylation [31]
Baculoviral IAP repeat-containing protein 2 (BIRC2) OTFXFREP BIRC2_HUMAN Decreases Expression [13]
Caspase-8 (CASP8) OTA8TVI8 CASP8_HUMAN Increases Cleavage [33]
Echinoderm microtubule-associated protein-like 4 (EML4) OTJC45TA EMAL4_HUMAN Increases Mutagenesis [29]
Broad substrate specificity ATP-binding cassette transporter ABCG2 (ABCG2) OTW8V2V1 ABCG2_HUMAN Decreases Activity [21]
GTPase KRas (KRAS) OT78QCN8 RASK_HUMAN Decreases Response To Substance [34]
Pro-epidermal growth factor (EGF) OTANRJ0L EGF_HUMAN Decreases Response To Substance [30]
Epidermal growth factor receptor (EGFR) OTAPLO1S EGFR_HUMAN Decreases Response To Substance [34]
Mast/stem cell growth factor receptor Kit (KIT) OTHUY3VZ KIT_HUMAN Decreases Response To Substance [22]
Proheparin-binding EGF-like growth factor (HBEGF) OTLU00JS HBEGF_HUMAN Decreases Response To Substance [30]
Protransforming growth factor alpha (TGFA) OTPD1LL9 TGFA_HUMAN Decreases Response To Substance [30]
------------------------------------------------------------------------------------
⏷ Show the Full List of 45 DOT(s)

References

1 Recurrent recessive mutation in deoxyguanosine kinase causes idiopathic noncirrhotic portal hypertension.Hepatology. 2016 Jun;63(6):1977-86. doi: 10.1002/hep.28499. Epub 2016 Mar 31.
2 2017 FDA drug approvals.Nat Rev Drug Discov. 2018 Feb;17(2):81-85.
3 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 7382).
4 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 4903).
5 Biological specificity of CDK4/6 inhibitors: dose response relationship, in vivo signaling, and composite response signature. Oncotarget. 2017 Jul 4;8(27):43678-43691. doi: 10.18632/oncotarget.18435.
6 Interpreting expression profiles of cancers by genome-wide survey of breadth of expression in normal tissues. Genomics 2005 Aug;86(2):127-41.
7 Abemaciclib Inhibits Renal Tubular Secretion Without Changing Glomerular Filtration Rate. Clin Pharmacol Ther. 2019 May;105(5):1187-1195.
8 LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]-Abemaciclib.
9 CDK4/6 Inhibition Controls Proliferation of Bladder Cancer and Transcription of RB1. J Urol. 2016 Mar;195(3):771-9. doi: 10.1016/j.juro.2015.08.082. Epub 2015 Aug 28.
10 Effect of abemaciclib (LY2835219) on enhancement of chemotherapeutic agents in ABCB1 and ABCG2 overexpressing cells in vitro and in vivo. Biochem Pharmacol. 2017 Jan 15;124:29-42. doi: 10.1016/j.bcp.2016.10.015. Epub 2016 Nov 2.
11 In vitro therapeutic effects of abemaciclib on triple-negative breast cancer cells. J Biochem Mol Toxicol. 2021 Sep;35(9):e22858. doi: 10.1002/jbt.22858. Epub 2021 Jul 26.
12 Enhancement of the antiproliferative activity of gemcitabine by modulation of c-Met pathway in pancreatic cancer. Curr Pharm Des. 2013;19(5):940-50.
13 Antitumor action of the MET tyrosine kinase inhibitor crizotinib (PF-02341066) in gastric cancer positive for MET amplification. Mol Cancer Ther. 2012 Jul;11(7):1557-64. doi: 10.1158/1535-7163.MCT-11-0934. Epub 2012 Jun 22.
14 Aberrant expression of the transcriptional factor Twist1 promotes invasiveness in ALK-positive anaplastic large cell lymphoma. Cell Signal. 2012 Apr;24(4):852-8. doi: 10.1016/j.cellsig.2011.11.020. Epub 2011 Dec 8.
15 Drugs@FDA. U.S. Food and Drug Administration. U.S. Department of Health & Human Services. 2015
16 Met tyrosine kinase inhibitor, PF-2341066, suppresses growth and invasion of nasopharyngeal carcinoma.Drug Des Devel Ther. 2015 Aug 26;9:4897-907.
17 Increased oral availability and brain accumulation of the ALK inhibitor crizotinib by coadministration of the P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) inhibitor elacridar. Int J Cancer. 2014 Mar 15;134(6):1484-94.
18 Contribution of OATP1B1 and OATP1B3 to the disposition of sorafenib and sorafenib-glucuronide. Clin Cancer Res. 2013 Mar 15;19(6):1458-66.
19 Crizotinib for the treatment of non-small-cell lung cancer. Am J Health Syst Pharm. 2013 Jun 1;70(11):943-7.
20 Prediction of crizotinib-midazolam interaction using the Simcyp population-based simulator: comparison of CYP3A time-dependent inhibition between human liver microsomes versus hepatocytes. Drug Metab Dispos. 2013 Feb;41(2):343-52.
21 Editor's Highlight: PlacentalDisposition and Effects of Crizotinib: An Ex Vivo Study in the Isolated Dual-Side Perfused Human Cotyledon. Toxicol Sci. 2017 Jun 1;157(2):500-509. doi: 10.1093/toxsci/kfx063.
22 Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Sci Transl Med. 2012 Feb 8;4(120):120ra17. doi: 10.1126/scitranslmed.3003316. Epub 2012 Jan 25.
23 Multi-parameter in vitro toxicity testing of crizotinib, sunitinib, erlotinib, and nilotinib in human cardiomyocytes. Toxicol Appl Pharmacol. 2013 Oct 1;272(1):245-55.
24 Rapid-onset hypogonadism secondary to crizotinib use in men with metastatic nonsmall cell lung cancer. Cancer. 2012 Nov 1;118(21):5302-9. doi: 10.1002/cncr.27450. Epub 2012 Apr 4.
25 Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J Med Chem. 2011 Sep 22;54(18):6342-63. doi: 10.1021/jm2007613. Epub 2011 Aug 18.
26 ROS-dependent DNA damage contributes to crizotinib-induced hepatotoxicity via the apoptotic pathway. Toxicol Appl Pharmacol. 2019 Nov 15;383:114768. doi: 10.1016/j.taap.2019.114768. Epub 2019 Oct 19.
27 Elucidating mechanisms of toxicity using phenotypic data from primary human cell systems--a chemical biology approach for thrombosis-related side effects. Int J Mol Sci. 2015 Jan 5;16(1):1008-29. doi: 10.3390/ijms16011008.
28 Cytotoxicity of 34 FDA approved small-molecule kinase inhibitors in primary rat and human hepatocytes. Toxicol Lett. 2018 Jul;291:138-148. doi: 10.1016/j.toxlet.2018.04.010. Epub 2018 Apr 12.
29 Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK. Proc Natl Acad Sci U S A. 2011 May 3;108(18):7535-40. doi: 10.1073/pnas.1019559108. Epub 2011 Apr 18.
30 Paracrine receptor activation by microenvironment triggers bypass survival signals and ALK inhibitor resistance in EML4-ALK lung cancer cells. Clin Cancer Res. 2012 Jul 1;18(13):3592-602. doi: 10.1158/1078-0432.CCR-11-2972. Epub 2012 May 2.
31 Crizotinib-resistant mutants of EML4-ALK identified through an accelerated mutagenesis screen. Chem Biol Drug Des. 2011 Dec;78(6):999-1005. doi: 10.1111/j.1747-0285.2011.01239.x. Epub 2011 Oct 31.
32 Tyrosine phosphorylation of the scaffold protein IQGAP1 in the MET pathway alters function. J Biol Chem. 2020 Dec 25;295(52):18105-18121. doi: 10.1074/jbc.RA120.015891. Epub 2020 Oct 21.
33 Keratinocytes apoptosis contributes to crizotinib induced-erythroderma. Toxicol Lett. 2020 Feb 1;319:102-110. doi: 10.1016/j.toxlet.2019.11.007. Epub 2019 Nov 7.
34 Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res. 2012 Mar 1;18(5):1472-82. doi: 10.1158/1078-0432.CCR-11-2906. Epub 2012 Jan 10.