1 |
Succinylcholine FDA Label
|
2 |
URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 4004).
|
3 |
The involvement of histaminic and muscarinic receptors in the bronchoconstriction induced by myorelaxant administration in sensitized rabbits. Anesth Analg. 2008 Dec;107(6):1899-906.
|
4 |
Response of the newborn to succinlycholine injection in homozygotic atypical mothers. Anesthesiology. 1975 Jul;43(1):115-6. doi: 10.1097/00000542-197507000-00028.
|
5 |
Midazolam pretreatment does not ameliorate myoglobinemia or the clinical side effects of succinylcholine. J Clin Anesth. 1993 Sep-Oct;5(5):414-8. doi: 10.1016/0952-8180(93)90107-p.
|
6 |
Signal transduction underlying carbachol-induced contraction of human urinary bladder. J Pharmacol Exp Ther. 2004 Jun;309(3):1148-53.
|
7 |
Design, synthesis, and neurochemical evaluation of 5-(3-alkyl-1,2,4- oxadiazol-5-yl)-1,4,5,6-tetrahydropyrimidines as M1 muscarinic receptor agonists. J Med Chem. 1993 Apr 2;36(7):842-7.
|
8 |
DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 2008 Jan;36(Database issue):D901-6.
|
9 |
Role of parasympathetic nerves and muscarinic receptors in allergy and asthma.Chem Immunol Allergy.2012;98:48-69.
|
10 |
M(1) and M(3) muscarinic receptors are involved in the release of urinary bladder-derived relaxant factor. Pharmacol Res. 2009 May;59(5):300-5.
|
11 |
Muscarinic M3-receptors mediate cholinergic synergism of mitogenesis in airway smooth muscle. Am J Respir Cell Mol Biol. 2003 Feb;28(2):257-62.
|
12 |
Demonstration of bladder selective muscarinic receptor binding by intravesical oxybutynin to treat overactive bladder. J Urol. 2004 Nov;172(5 Pt 1):2059-64.
|
13 |
Comparison of muscarinic receptor selectivity of solifenacin and oxybutynin in the bladder and submandibular gland of muscarinic receptor knockout ... Eur J Pharmacol. 2009 Aug 1;615(1-3):201-6.
|
14 |
Interaction of neuromuscular blocking drugs with recombinant human m1-m5 muscarinic receptors expressed in Chinese hamster ovary cells. Br J Pharmacol. 1998 Nov;125(5):1088-94.
|
15 |
Degradation of submandibular gland AQP5 by parasympathetic denervation of chorda tympani and its recovery by cevimeline, an M3 muscarinic receptor ... Am J Physiol Gastrointest Liver Physiol. 2008 Jul;295(1):G112-G123.
|
16 |
Increased organophosphate scavenging in a butyrylcholinesterase mutant. Chem Biol Interact. 2008 Sep 25;175(1-3):376-9. doi: 10.1016/j.cbi.2008.04.012. Epub 2008 Apr 22.
|
17 |
Comparative effects of cationic triarylmethane, phenoxazine and phenothiazine dyes on horse serum butyrylcholinesterase. Arch Biochem Biophys. 2008 Oct 15;478(2):201-5.
|
18 |
Lichens of parmelioid clade as promising multitarget neuroprotective agents. Chem Res Toxicol. 2019 Jun 17;32(6):1165-1177.
|
19 |
Potencies and selectivities of inhibitors of acetylcholinesterase and its molecular forms in normal and Alzheimer's disease brain. Acta Biol Hung. 2003;54(2):183-9. doi: 10.1556/ABiol.54.2003.2.7.
|
20 |
ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.
|
21 |
Cholinesterase inhibition by phenothiazine and nonphenothiazine antihistaminics: analysis of its postulated role in synergizing organophosphate toxicity. Toxicol Appl Pharmacol. 1975 Feb;31(2):179-90.
|
22 |
Qualitative defects of pseudocholinesterase activity. Anaesthesia. 1967 Jan;22(1):55-68.
|
23 |
Essential role of cell cycle regulatory genes p21 and p27 expression in inhibition of breast cancer cells by arsenic trioxide. Med Oncol. 2011 Dec;28(4):1225-54.
|
24 |
Preparation and reactions of myoglobin mutants bearing both proximal cysteine ligand and hydrophobic distal cavity: protein models for the active site of P-450. Biochemistry. 1996 Oct 8;35(40):13118-24. doi: 10.1021/bi960459z.
|
25 |
From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
|
26 |
Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
|
27 |
Long-term estrogen exposure promotes carcinogen bioactivation, induces persistent changes in gene expression, and enhances the tumorigenicity of MCF-7 human breast cancer cells. Toxicol Appl Pharmacol. 2009 Nov 1;240(3):355-66.
|
28 |
Functional cardiotoxicity assessment of cosmetic compounds using human-induced pluripotent stem cell-derived cardiomyocytes. Arch Toxicol. 2018 Jan;92(1):371-381.
|
29 |
Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
|
30 |
Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
|
31 |
A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
|
32 |
Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
|
|
|
|
|
|
|