General Information of Drug (ID: DML0RAE)

Drug Name
Methoxyflurane
Synonyms
Analgizer; Anecotan; Ingalan; Inhalan; Methofane; Methoflurane; Methofluranum; Methoxane; Methoxiflurane; Methoxifluranum;Methoxyfluoran; Methoxyfluorane; Methoxyfluran; Methoxyfluranum; Metofane; Metossiflurano; Metoxfluran; Metoxifluran; Metoxiflurano; Penthrane; Pentran; Pentrane; Metossiflurano [DCIT]; Methoxyflurane [Anaesthetics, volatile]; Methoxyfluranum [INN-Latin]; Metofane (VAN); Metoxiflurano [INN-Spanish]; Penthrane (TN); Penthrane (VAN); Methoxyflurane (USP/INN); Methoxyflurane [USAN:INN:BAN]; Methyl 1,1-difluoro-2,2-dichloroethyl ether; Ether, 2,2-dichloro-1,1-difluoroethyl methyl; (2,2-dichloro-1,1-difluoroethyl) methyl ether; 2,2-Dichloro-1,1-difluoro-1-methoxyethane; 2,2-Dichloro-1,1-difluoroethyl methyl ether
Indication
Disease Entry ICD 11 Status REF
Anaesthesia 9A78.6 Approved [1], [2]
Therapeutic Class
Anesthetics
Drug Type
Small molecular drug
Structure
3D MOL 2D MOL
#Ro5 Violations (Lipinski): 0 Molecular Weight (mw) 164.96
Topological Polar Surface Area (xlogp) 2.2
Rotatable Bond Count (rotbonds) 2
Hydrogen Bond Donor Count (hbonddonor) 0
Hydrogen Bond Acceptor Count (hbondacc) 3
ADMET Property
Metabolism
The drug is metabolized via the hepatic [3]
Chemical Identifiers
Formula
C3H4Cl2F2O
IUPAC Name
2,2-dichloro-1,1-difluoro-1-methoxyethane
Canonical SMILES
COC(C(Cl)Cl)(F)F
InChI
InChI=1S/C3H4Cl2F2O/c1-8-3(6,7)2(4)5/h2H,1H3
InChIKey
RFKMCNOHBTXSMU-UHFFFAOYSA-N
Cross-matching ID
PubChem CID
4116
ChEBI ID
CHEBI:6843
CAS Number
76-38-0
DrugBank ID
DB01028
TTD ID
D07SOO
INTEDE ID
DR1048

Molecular Interaction Atlas of This Drug


Drug Therapeutic Target (DTT)
DTT Name DTT ID UniProt ID MOA REF
GABA(A) receptor alpha-1 (GABRA1) TT1MPAY GBRA1_HUMAN Antagonist [4]

Drug-Metabolizing Enzyme (DME)
DME Name DME ID UniProt ID MOA REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Substrate [5]
Cytochrome P450 2E1 (CYP2E1) DEVDYN7 CP2E1_HUMAN Substrate [6]
Cytochrome P450 2D6 (CYP2D6) DECB0K3 CP2D6_HUMAN Substrate [5]
Cytochrome P450 2C9 (CYP2C9) DE5IED8 CP2C9_HUMAN Substrate [5]
Cytochrome P450 2A6 (CYP2A6) DEJVYAZ CP2A6_HUMAN Substrate [7]
Cytochrome P450 1A2 (CYP1A2) DEJGDUW CP1A2_HUMAN Substrate [5]
Cytochrome P450 2B6 (CYP2B6) DEPKLMQ CP2B6_HUMAN Substrate [7]
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This Drug

Drug-Drug Interaction (DDI) Information of This Drug

Coadministration of a Drug Treating the Disease Different from Methoxyflurane (Comorbidity)
DDI Drug Name DDI Drug ID Severity Mechanism Comorbidity REF
Remdesivir DMBFZ6L Moderate Decreased renal excretion of Methoxyflurane caused by Remdesivir mediated nephrotoxicity. 1D6YCoronavirus Disease 2019 [1D6YCoronavirus Disease 2019] [67]
Inotersen DMJ93CT Major Increased risk of nephrotoxicity by the combination of Methoxyflurane and Inotersen. Amyloidosis [5D00] [68]
Streptomycin DME1LQN Moderate Increased risk of nephrotoxicity by the combination of Methoxyflurane and Streptomycin. Bacterial infection [1A00-1C4Z] [68]
Etidronic acid DM1XHYJ Moderate Increased risk of nephrotoxicity by the combination of Methoxyflurane and Etidronic acid. Bone paget disease [FB85] [69]
Phenobarbital DMXZOCG Moderate Increased metabolism of Methoxyflurane caused by Phenobarbital mediated induction of CYP450 enzyme. Epilepsy/seizure [8A61-8A6Z] [70]
177Lu-DOTATATE DMT8GVU Moderate Increased risk of nephrotoxicity by the combination of Methoxyflurane and 177Lu-DOTATATE. Hepatitis virus infection [1E50-1E51] [68]
Rifampin DMA8J1G Moderate Increased metabolism of Methoxyflurane caused by Rifampin mediated induction of CYP450 enzyme. HIV-infected patients with tuberculosis [1B10-1B14] [68]
Givosiran DM5PFIJ Moderate Increased risk of nephrotoxicity by the combination of Methoxyflurane and Givosiran. Inborn porphyrin/heme metabolism error [5C58] [68]
Amobarbital DM0GQ8N Moderate Increased metabolism of Methoxyflurane caused by Amobarbital mediated induction of CYP450 enzyme. Insomnia [7A00-7A0Z] [70]
Ceritinib DMB920Z Moderate Decreased metabolism of Methoxyflurane caused by Ceritinib mediated inhibition of CYP450 enzyme. Lung cancer [2C25] [67]
Moxetumomab pasudotox DMN63DZ Moderate Increased risk of nephrotoxicity by the combination of Methoxyflurane and Moxetumomab pasudotox. Mature B-cell leukaemia [2A82] [68]
Exjade DMHPRWG Major Increased risk of nephrotoxicity by the combination of Methoxyflurane and Exjade. Mineral absorption/transport disorder [5C64] [71]
Ibuprofen DM8VCBE Moderate Increased risk of nephrotoxicity by the combination of Methoxyflurane and Ibuprofen. Pain [MG30-MG3Z] [68]
Everolimus DM8X2EH Major Increased risk of nephrotoxicity by the combination of Methoxyflurane and Everolimus. Renal cell carcinoma [2C90] [72]
Temsirolimus DMS104F Major Increased risk of nephrotoxicity by the combination of Methoxyflurane and Temsirolimus. Renal cell carcinoma [2C90] [72]
Colistimethate DMZ9BMU Moderate Increased risk of nephrotoxicity by the combination of Methoxyflurane and Colistimethate. Respiratory infection [CA07-CA4Z] [68]
Telavancin DM58VQX Moderate Increased risk of nephrotoxicity by the combination of Methoxyflurane and Telavancin. Staphylococcal/streptococcal disease [1B5Y] [68]
Olsalazine DMZW9HA Moderate Increased risk of nephrotoxicity by the combination of Methoxyflurane and Olsalazine. Ulcerative colitis [DD71] [73]
Plazomicin DMKMBES Moderate Increased risk of nephrotoxicity by the combination of Methoxyflurane and Plazomicin. Urinary tract infection [GC08] [68]
⏷ Show the Full List of 19 DDI Information of This Drug

References

1 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 7234).
2 Drug information of Methoxyflurane, 2008. eduDrugs.
3 FDA approval: ado-trastuzumab emtansine for the treatment of patients with HER2-positive metastatic breast cancer. Clin Cancer Res. 2014 Sep 1;20(17):4436-41.
4 DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 2008 Jan;36(Database issue):D901-6.
5 Identification of cytochrome P450 2E1 as the predominant enzyme catalyzing human liver microsomal defluorination of sevoflurane, isoflurane, and methoxyflurane. Anesthesiology. 1993 Oct;79(4):795-807.
6 Construction and assessment of models of CYP2E1: predictions of metabolism from docking, molecular dynamics, and density functional theoretical calculations. J Med Chem. 2003 Apr 24;46(9):1645-60.
7 Human kidney methoxyflurane and sevoflurane metabolism. Intrarenal fluoride production as a possible mechanism of methoxyflurane nephrotoxicity. Anesthesiology. 1995 Mar;82(3):689-99.
8 Expression levels and activation of a PXR variant are directly related to drug resistance in osteosarcoma cell lines. Cancer. 2007 Mar 1;109(5):957-65.
9 Contribution of human hepatic cytochrome P450 isoforms to regioselective hydroxylation of steroid hormones. Xenobiotica. 1998 Jun;28(6):539-47.
10 Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther. 2004 Sep;310(3):1062-75.
11 Isoform-specific regulation of cytochromes P450 expression by estradiol and progesterone. Drug Metab Dispos. 2013 Feb;41(2):263-9.
12 Metabolic interactions between acetaminophen (paracetamol) and two flavonoids, luteolin and quercetin, through in-vitro inhibition studies. J Pharm Pharmacol. 2017 Dec;69(12):1762-1772.
13 Potent mechanism-based inhibition of CYP3A4 by imatinib explains its liability to interact with CYP3A4 substrates. Br J Pharmacol. 2012 Apr;165(8):2787-98.
14 Effects of morin on the pharmacokinetics of etoposide in rats. Biopharm Drug Dispos. 2007 Apr;28(3):151-6.
15 The metabolism of zidovudine by human liver microsomes in vitro: formation of 3'-amino-3'-deoxythymidine. Biochem Pharmacol. 1994 Jul 19;48(2):267-76.
16 Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675.
17 Roles of cytochromes P450 1A2, 2A6, and 2C8 in 5-fluorouracil formation from tegafur, an anticancer prodrug, in human liver microsomes. Drug Metab Dispos. 2000 Dec;28(12):1457-63.
18 Effects of polyunsaturated fatty acids on prostaglandin synthesis and cyclooxygenase-mediated DNA adduct formation by heterocyclic aromatic amines in human adenocarcinoma colon cells. Mol Carcinog. 2004 Jul;40(3):180-8.
19 Endoxifen and other metabolites of tamoxifen inhibit human hydroxysteroid sulfotransferase 2A1 (hSULT2A1). Drug Metab Dispos. 2014 Nov;42(11):1843-50.
20 Cytochrome P450 1A2 (CYP1A2) activity and risk factors for breast cancer: a cross-sectional study. Breast Cancer Res. 2004;6(4):R352-65.
21 PharmGKB summary: pathways of acetaminophen metabolism at the therapeutic versus toxic doses. Pharmacogenet Genomics. 2015 Aug;25(8):416-26.
22 The effect of apigenin on pharmacokinetics of imatinib and its metabolite N-desmethyl imatinib in rats. Biomed Res Int. 2013;2013:789184.
23 The influence of metabolic gene polymorphisms on urinary 1-hydroxypyrene concentrations in Chinese coke oven workers. Sci Total Environ. 2007 Aug 1;381(1-3):38-46.
24 Identification of P450 enzymes involved in metabolism of verapamil in humans. Naunyn Schmiedebergs Arch Pharmacol. 1993 Sep;348(3):332-7.
25 Metabolism and metabolic inhibition of xanthotoxol in human liver microsomes. Evid Based Complement Alternat Med. 2016;2016:5416509.
26 Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev. 2002 Feb-May;34(1-2):83-448.
27 Genotoxicity of tamoxifen, tamoxifen epoxide and toremifene in human lymphoblastoid cells containing human cytochrome P450s. Carcinogenesis. 1994 Jan;15(1):5-9.
28 Psychotropic drug interactions with valproate. Clin Neuropharmacol. 2005 Mar-Apr;28(2):96-101.
29 The role of human cytochrome P450 enzymes in the formation of 2-hydroxymetronidazole: CYP2A6 is the high affinity (low Km) catalyst. Drug Metab Dispos. 2013 Sep;41(9):1686-94.
30 Possible involvement of multiple human cytochrome P450 isoforms in the liver metabolism of propofol. Br J Anaesth. 1998 Jun;80(6):788-95.
31 CYP2A6- and CYP2A13-catalyzed metabolism of the nicotine delta-5'(1')iminium ion. J Pharmacol Exp Ther. 2012 Nov;343(2):307-15.
32 Inhibitory effects of anticancer drugs on dextromethorphan-O-demethylase activity in human liver microsomes. Cancer Chemother Pharmacol. 1993;32(6):491-5.
33 Effect of genetic polymorphism on the metabolism of endogenous neuroactive substances, progesterone and p-tyramine, catalyzed by CYP2D6. Brain Res Mol Brain Res. 2004 Oct 22;129(1-2):117-23.
34 CYP2D6 polymorphisms and tamoxifen metabolism: clinical relevance. Curr Oncol Rep. 2010 Jan;12(1):7-15.
35 Inhibition of cytochrome P450 2D6: structure-activity studies using a series of quinidine and quinine analogues. Chem Res Toxicol. 2003 Apr;16(4):450-9.
36 Effects of propofol on human hepatic microsomal cytochrome P450 activities. Xenobiotica. 1998 Sep;28(9):845-53.
37 Pharmacogenetics of schizophrenia. Am J Med Genet. 2000 Spring;97(1):98-106.
38 Roles of CYP2A6 and CYP2B6 in nicotine C-oxidation by human liver microsomes. Arch Toxicol. 1999 Mar;73(2):65-70.
39 Structure-activity relationship for human cytochrome P450 substrates and inhibitors. Drug Metab Rev. 2002 Feb-May;34(1-2):69-82.
40 Chronic ethanol feeding and folate deficiency activate hepatic endoplasmic reticulum stress pathway in micropigs. Am J Physiol Gastrointest Liver Physiol. 2005 Jul;289(1):G54-63.
41 Cytochrome P450 2E1 null mice provide novel protection against cisplatin-induced nephrotoxicity and apoptosis. Kidney Int. 2003 May;63(5):1687-96.
42 Acetaminophen induced acute liver failure via oxidative stress and JNK activation: protective role of taurine by the suppression of cytochrome P450 2E1. Free Radic Res. 2010 Mar;44(3):340-55.
43 A study on the metabolism of etoposide and possible interactions with antitumor or supporting agents by human liver microsomes. J Pharmacol Exp Ther. 1998 Sep;286(3):1294-300.
44 Novel metabolic pathway of estrone and 17beta-estradiol catalyzed by cytochrome P-450. Drug Metab Dispos. 2000 Feb;28(2):110-2.
45 Inhibition of cytochrome P450 2E1 by propofol in human and porcine liver microsomes. Biochem Pharmacol. 2002 Oct 1;64(7):1151-6.
46 CYP2E1 and clinical features in alcoholics. Neuropsychobiology. 2003;47(2):86-9.
47 Progesterone and testosterone hydroxylation by cytochromes P450 2C19, 2C9, and 3A4 in human liver microsomes. Arch Biochem Biophys. 1997 Oct 1;346(1):161-9.
48 Tamoxifen inhibits cytochrome P450 2C9 activity in breast cancer patients. J Chemother. 2006 Aug;18(4):421-4.
49 Characterization of the oxidative metabolites of 17beta-estradiol and estrone formed by 15 selectively expressed human cytochrome p450 isoforms. Endocrinology. 2003 Aug;144(8):3382-98.
50 Drug-drug interactions with imatinib: an observational study. Medicine (Baltimore). 2016 Oct;95(40):e5076.
51 Drug interactions with calcium channel blockers: possible involvement of metabolite-intermediate complexation with CYP3A. Drug Metab Dispos. 2000 Feb;28(2):125-30.
52 New insights into the structural features and functional relevance of human cytochrome P450 2C9. Part I. Curr Drug Metab. 2009 Dec;10(10):1075-126.
53 A potential role for the estrogen-metabolizing cytochrome P450 enzymes in human breast carcinogenesis. Breast Cancer Res Treat. 2003 Dec;82(3):191-7.
54 A mechanistic approach to antiepileptic drug interactions. Ann Pharmacother. 1998 May;32(5):554-63.
55 Effect of tamoxifen on the enzymatic activity of human cytochrome CYP2B6. J Pharmacol Exp Ther. 2002 Jun;301(3):945-52.
56 Hepatic metabolism of diclofenac: role of human CYP in the minor oxidative pathways. Biochem Pharmacol. 1999 Sep 1;58(5):787-96.
57 Insights into CYP2B6-mediated drug-drug interactions. Acta Pharm Sin B. 2016 Sep;6(5):413-425.
58 Drugs that may have potential CYP2B6 interactions.
59 Involvement of human cytochrome P450 2B6 in the omega- and 4-hydroxylation of the anesthetic agent propofol. Xenobiotica. 2007 Jul;37(7):717-24.
60 Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-butanone metabolism by cytochrome P450 2B6. Drug Metab Dispos. 2005 Dec;33(12):1760-4.
61 PharmGKB summary: phenytoin pathway. Pharmacogenet Genomics. 2012 Jun;22(6):466-70.
62 Application of the relative activity factor approach in scaling from heterologously expressed cytochromes p450 to human liver microsomes: studies on amitriptyline as a model substrate. J Pharmacol Exp Ther. 2001 Apr;297(1):326-37.
63 Zolpidem, a selective GABA(A) receptor alpha1 subunit agonist, induces comparable Fos expression in oxytocinergic neurons of the hypothalamic paraventricular and accessory but not supraoptic nuclei in the rat.Brain Res Bull.2006 Dec 11;71(1-3):200-7.
64 Neurosteroid analogues. 10. The effect of methyl group substitution at the C-6 and C-7 positions on the GABA modulatory and anesthetic actions of (... J Med Chem. 2005 Apr 21;48(8):3051-9.
65 3-demethoxy-3-glycosylaminothiocolchicines: Synthesis of a new class of putative muscle relaxant compounds. J Med Chem. 2006 Sep 7;49(18):5571-7.
66 Drugs@FDA. U.S. Food and Drug Administration. U.S. Department of Health & Human Services.
67 Cerner Multum, Inc. "Australian Product Information.".
68 Cerner Multum, Inc. "UK Summary of Product Characteristics.".
69 Chang JT, Green L, Beitz J "Renal failure with the use of zoledronic acid." N Engl J Med 349 (2003): 1676-9 discussion 1676-9. [PMID: 14573746]
70 Brodeur J, Paquin P, Authier L, Geadah D, Yamauchi M, Cote MG "Influence of phenobarbital pretreatment on methoxyflurane and sodium fluoride nephropathy in Fischer 344 Rats." Toxicol Appl Pharmacol 37 (1976): 349-61. [PMID: 982456]
71 Product Information. Exjade (deferasirox). Novartis Pharmaceuticals, East Hanover, NJ.
72 Product Information. Prograf (tacrolimus). Fujisawa, Deerfield, IL.
73 Novis BH, Korzets Z, Chen P, Bernheim J "Nephrotic syndrome after treatment with 5-aminosalicylic acid." Br Med J (Clin Res Ed) 296 (1988): 1442. [PMID: 3132281]