General Information of Drug Off-Target (DOT) (ID: OT86YP8G)

DOT Name Stanniocalcin-2 (STC2)
Synonyms STC-2; Stanniocalcin-related protein; STC-related protein; STCRP
Gene Name STC2
UniProt ID
STC2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
7Y5Q; 8A7D; 8A7E; 8HGH
Pfam ID
PF03298
Sequence
MCAERLGQFMTLALVLATFDPARGTDATNPPEGPQDRSSQQKGRLSLQNTAEIQHCLVNA
GDVGCGVFECFENNSCEIRGLHGICMTFLHNAGKFDAQGKSFIKDALKCKAHALRHRFGC
ISRKCPAIREMVSQLQRECYLKHDLCAAAQENTRVIVEMIHFKDLLLHEPYVDLVNLLLT
CGEEVKEAITHSVQVQCEQNWGSLCSILSFCTSAIQKPPTAPPERQPQVDRTKLSRAHHG
EAGHHLPEPSSRETGRGAKGERGSKSHPNAHARGRVGGLGAQGPSGSSEWEDEQSEYSDI
RR
Function Has an anti-hypocalcemic action on calcium and phosphate homeostasis.
Tissue Specificity Expressed in a variety of tissues including muscle, heart, pancreas, kidney, spleen, prostate, small intestine, colon and peripheral blood leukocytes.
Reactome Pathway
Post-translational protein phosphorylation (R-HSA-8957275 )
Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-like Growth Factor Binding Proteins (IGFBPs) (R-HSA-381426 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Mitomycin DMH0ZJE Approved Stanniocalcin-2 (STC2) affects the response to substance of Mitomycin. [43]
Vinblastine DM5TVS3 Approved Stanniocalcin-2 (STC2) affects the response to substance of Vinblastine. [43]
------------------------------------------------------------------------------------
44 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Stanniocalcin-2 (STC2). [1]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Stanniocalcin-2 (STC2). [2]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Stanniocalcin-2 (STC2). [3]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Stanniocalcin-2 (STC2). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Stanniocalcin-2 (STC2). [5]
Cisplatin DMRHGI9 Approved Cisplatin affects the expression of Stanniocalcin-2 (STC2). [6]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Stanniocalcin-2 (STC2). [7]
Quercetin DM3NC4M Approved Quercetin increases the expression of Stanniocalcin-2 (STC2). [8]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Stanniocalcin-2 (STC2). [9]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Stanniocalcin-2 (STC2). [10]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide increases the expression of Stanniocalcin-2 (STC2). [11]
Calcitriol DM8ZVJ7 Approved Calcitriol affects the expression of Stanniocalcin-2 (STC2). [12]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Stanniocalcin-2 (STC2). [13]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Stanniocalcin-2 (STC2). [14]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Stanniocalcin-2 (STC2). [15]
Decitabine DMQL8XJ Approved Decitabine affects the expression of Stanniocalcin-2 (STC2). [6]
Marinol DM70IK5 Approved Marinol increases the expression of Stanniocalcin-2 (STC2). [16]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Stanniocalcin-2 (STC2). [17]
Phenobarbital DMXZOCG Approved Phenobarbital increases the expression of Stanniocalcin-2 (STC2). [18]
Progesterone DMUY35B Approved Progesterone decreases the expression of Stanniocalcin-2 (STC2). [19]
Niclosamide DMJAGXQ Approved Niclosamide increases the expression of Stanniocalcin-2 (STC2). [20]
Cannabidiol DM0659E Approved Cannabidiol increases the expression of Stanniocalcin-2 (STC2). [21]
Troglitazone DM3VFPD Approved Troglitazone increases the expression of Stanniocalcin-2 (STC2). [22]
Hydroquinone DM6AVR4 Approved Hydroquinone increases the expression of Stanniocalcin-2 (STC2). [23]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol decreases the expression of Stanniocalcin-2 (STC2). [24]
Nicotine DMWX5CO Approved Nicotine increases the expression of Stanniocalcin-2 (STC2). [25]
Azacitidine DMTA5OE Approved Azacitidine decreases the expression of Stanniocalcin-2 (STC2). [26]
Sulindac DM2QHZU Approved Sulindac increases the expression of Stanniocalcin-2 (STC2). [27]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Stanniocalcin-2 (STC2). [28]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Stanniocalcin-2 (STC2). [29]
Belinostat DM6OC53 Phase 2 Belinostat decreases the expression of Stanniocalcin-2 (STC2). [13]
Lithium DMZ3OU6 Phase 2 Lithium decreases the expression of Stanniocalcin-2 (STC2). [30]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Stanniocalcin-2 (STC2). [31]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Stanniocalcin-2 (STC2). [32]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Stanniocalcin-2 (STC2). [33]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN increases the expression of Stanniocalcin-2 (STC2). [35]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Stanniocalcin-2 (STC2). [36]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Stanniocalcin-2 (STC2). [37]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Stanniocalcin-2 (STC2). [38]
chloropicrin DMSGBQA Investigative chloropicrin affects the expression of Stanniocalcin-2 (STC2). [39]
Nickel chloride DMI12Y8 Investigative Nickel chloride increases the expression of Stanniocalcin-2 (STC2). [40]
CH-223191 DMMJZYC Investigative CH-223191 increases the expression of Stanniocalcin-2 (STC2). [41]
Arachidonic acid DMUOQZD Investigative Arachidonic acid increases the expression of Stanniocalcin-2 (STC2). [42]
U0126 DM31OGF Investigative U0126 increases the expression of Stanniocalcin-2 (STC2). [19]
------------------------------------------------------------------------------------
⏷ Show the Full List of 44 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Stanniocalcin-2 (STC2). [34]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Inter-laboratory comparison of human renal proximal tubule (HK-2) transcriptome alterations due to Cyclosporine A exposure and medium exhaustion. Toxicol In Vitro. 2009 Apr;23(3):486-99.
3 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
4 RNA sequence analysis of inducible pluripotent stem cell-derived cardiomyocytes reveals altered expression of DNA damage and cell cycle genes in response to doxorubicin. Toxicol Appl Pharmacol. 2018 Oct 1;356:44-53.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS One. 2012;7(12):e53003. doi: 10.1371/journal.pone.0053003. Epub 2012 Dec 27.
7 Expression profiling of the estrogen responsive genes in response to phytoestrogens using a customized DNA microarray. FEBS Lett. 2005 Mar 14;579(7):1732-40.
8 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
9 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
10 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
11 Unique signatures of stress-induced senescent human astrocytes. Exp Neurol. 2020 Dec;334:113466. doi: 10.1016/j.expneurol.2020.113466. Epub 2020 Sep 17.
12 Role of calcitriol and cortisol on human adipocyte proliferation and oxidative and inflammatory stress: a microarray study. J Nutrigenet Nutrigenomics. 2008;1(1-2):30-48. doi: 10.1159/000109873. Epub 2007 Oct 16.
13 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
14 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
15 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
16 Inhibiting Heat Shock Proteins Can Potentiate the Cytotoxic Effect of Cannabidiol in Human Glioma Cells. Anticancer Res. 2015 Nov;35(11):5827-37.
17 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
18 Dose- and time-dependent effects of phenobarbital on gene expression profiling in human hepatoma HepaRG cells. Toxicol Appl Pharmacol. 2009 Feb 1;234(3):345-60.
19 Ovarian steroids, mitogen-activated protein kinases, and/or aspartic proteinases cooperate to control endometrial remodeling by regulating gene expression in the stroma and glands. Endocrinology. 2010 Sep;151(9):4515-26. doi: 10.1210/en.2009-1398. Epub 2010 Jul 21.
20 Mitochondrial Uncoupling Induces Epigenome Remodeling and Promotes Differentiation in Neuroblastoma. Cancer Res. 2023 Jan 18;83(2):181-194. doi: 10.1158/0008-5472.CAN-22-1029.
21 Cannabidiol enhances cytotoxicity of anti-cancer drugs in human head and neck squamous cell carcinoma. Sci Rep. 2020 Nov 26;10(1):20622. doi: 10.1038/s41598-020-77674-y.
22 Effects of ciglitazone and troglitazone on the proliferation of human stomach cancer cells. World J Gastroenterol. 2009 Jan 21;15(3):310-20.
23 In vitro effects of aldehydes present in tobacco smoke on gene expression in human lung alveolar epithelial cells. Toxicol In Vitro. 2013 Apr;27(3):1072-81.
24 Identification of biomarkers and outcomes of endocrine disruption in human ovarian cortex using In Vitro Models. Toxicology. 2023 Feb;485:153425. doi: 10.1016/j.tox.2023.153425. Epub 2023 Jan 5.
25 Nicotinic modulation of gene expression in SH-SY5Y neuroblastoma cells. Brain Res. 2006 Oct 20;1116(1):39-49.
26 The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. Leukemia. 2009 Jun;23(6):1019-28.
27 Expression profile analysis of colon cancer cells in response to sulindac or aspirin. Biochem Biophys Res Commun. 2002 Mar 29;292(2):498-512.
28 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
29 Convergent transcriptional profiles induced by endogenous estrogen and distinct xenoestrogens in breast cancer cells. Carcinogenesis. 2006 Aug;27(8):1567-78.
30 A genetic network model of cellular responses to lithium treatment and cocaine abuse in bipolar disorder. BMC Syst Biol. 2010 Nov 19;4:158. doi: 10.1186/1752-0509-4-158.
31 Gene expression profiling of A549 cells exposed to Milan PM2.5. Toxicol Lett. 2012 Mar 7;209(2):136-45.
32 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
33 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
34 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
35 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
36 Bisphenolic compounds alter gene expression in MCF-7 cells through interaction with estrogen receptor . Toxicol Appl Pharmacol. 2020 Jul 15;399:115030. doi: 10.1016/j.taap.2020.115030. Epub 2020 May 6.
37 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
38 Cystathionine metabolic enzymes play a role in the inflammation resolution of human keratinocytes in response to sub-cytotoxic formaldehyde exposure. Toxicol Appl Pharmacol. 2016 Nov 1;310:185-194.
39 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
40 The contact allergen nickel triggers a unique inflammatory and proangiogenic gene expression pattern via activation of NF-kappaB and hypoxia-inducible factor-1alpha. J Immunol. 2007 Mar 1;178(5):3198-207.
41 Adaptive changes in global gene expression profile of lung carcinoma A549 cells acutely exposed to distinct types of AhR ligands. Toxicol Lett. 2018 Aug;292:162-174.
42 Arachidonic acid-induced gene expression in colon cancer cells. Carcinogenesis. 2006 Oct;27(10):1950-60.
43 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.