General Information of Drug Off-Target (DOT) (ID: OTBR33M9)

DOT Name Amino acid transporter heavy chain SLC3A2 (SLC3A2)
Synonyms 4F2 cell-surface antigen heavy chain; 4F2hc; 4F2 heavy chain antigen; Lymphocyte activation antigen 4F2 large subunit; Solute carrier family 3 member 2; CD antigen CD98
Gene Name SLC3A2
UniProt ID
4F2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2DH2; 2DH3; 6IRS; 6IRT; 6JMQ; 6JMR; 6S8V; 7B00; 7CCS; 7CMH; 7CMI; 7DF1; 7DSK; 7DSL; 7DSN; 7DSQ; 7EPZ; 7P9U; 7P9V; 8A6L; 8G0M
Pfam ID
PF00128 ; PF16028
Sequence
MELQPPEASIAVVSIPRQLPGSHSEAGVQGLSAGDDSELGSHCVAQTGLELLASGDPLPS
ASQNAEMIETGSDCVTQAGLQLLASSDPPALASKNAEVTGTMSQDTEVDMKEVELNELEP
EKQPMNAASGAAMSLAGAEKNGLVKIKVAEDEAEAAAAAKFTGLSKEELLKVAGSPGWVR
TRWALLLLFWLGWLGMLAGAVVIIVRAPRCRELPAQKWWHTGALYRIGDLQAFQGHGAGN
LAGLKGRLDYLSSLKVKGLVLGPIHKNQKDDVAQTDLLQIDPNFGSKEDFDSLLQSAKKK
SIRVILDLTPNYRGENSWFSTQVDTVATKVKDALEFWLQAGVDGFQVRDIENLKDASSFL
AEWQNITKGFSEDRLLIAGTNSSDLQQILSLLESNKDLLLTSSYLSDSGSTGEHTKSLVT
QYLNATGNRWCSWSLSQARLLTSFLPAQLLRLYQLMLFTLPGTPVFSYGDEIGLDAAALP
GQPMEAPVMLWDESSFPDIPGAVSANMTVKGQSEDPGSLLSLFRRLSDQRSKERSLLHGD
FHAFSAGPGLFSYIRHWDQNERFLVVLNFGDVGLSAGLQASDLPASASLPAKADLLLSTQ
PGREEGSPLELERLKLEPHEGLLLRFPYAA
Function
Acts as a chaperone that facilitates biogenesis and trafficking of functional transporters heterodimers to the plasma membrane. Forms heterodimer with SLC7 family transporters (SLC7A5, SLC7A6, SLC7A7, SLC7A8, SLC7A10 and SLC7A11), a group of amino-acid antiporters. Heterodimers function as amino acids exchangers, the specificity of the substrate depending on the SLC7A subunit. Heterodimers SLC3A2/SLC7A6 or SLC3A2/SLC7A7 mediate the uptake of dibasic amino acids. Heterodimer SLC3A2/SLC7A11 functions as an antiporter by mediating the exchange of extracellular anionic L-cystine and intracellular L-glutamate across the cellular plasma membrane. SLC3A2/SLC7A10 translocates small neutral L- and D-amino acids across the plasma membrane. SLC3A2/SLC75 or SLC3A2/SLC7A8 translocates neutral amino acids with broad specificity, thyroid hormones and L-DOPA. SLC3A2 is essential for plasma membrane localization, stability, and the transport activity of SLC7A5 and SLC7A8. When associated with LAPTM4B, the heterodimer SLC7A5 is recruited to lysosomes to promote leucine uptake into these organelles, and thereby mediates mTORC1 activation. Modulates integrin-related signaling and is essential for integrin-dependent cell spreading, migration and tumor progression ; (Microbial infection) In case of hepatitis C virus/HCV infection, the complex formed by SLC3A2 and SLC7A5/LAT1 plays a role in HCV propagation by facilitating viral entry into host cell and increasing L-leucine uptake-mediated mTORC1 signaling activation, thereby contributing to HCV-mediated pathogenesis; (Microbial infection) Acts as a receptor for malaria parasite Plasmodium vivax (Thai isolate) in immature red blood cells.
Tissue Specificity
Expressed ubiquitously in all tissues tested with highest levels detected in kidney, placenta and testis and weakest level in thymus. During gestation, expression in the placenta was significantly stronger at full-term than at the mid-trimester stage. Expressed in HUVECS and at low levels in resting peripheral blood T-lymphocytes and quiescent fibroblasts. Also expressed in fetal liver and in the astrocytic process of primary astrocytic gliomas. Expressed in retinal endothelial cells and in the intestinal epithelial cell line C2BBe1.
KEGG Pathway
mTOR sig.ling pathway (hsa04150 )
Ferroptosis (hsa04216 )
Protein digestion and absorption (hsa04974 )
Reactome Pathway
Amino acid transport across the plasma membrane (R-HSA-352230 )
Defective SLC7A7 causes lysinuric protein intolerance (LPI) (R-HSA-5660862 )
Tryptophan catabolism (R-HSA-71240 )
Basigin interactions (R-HSA-210991 )
BioCyc Pathway
MetaCyc:ENSG00000168003-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Regulation of Drug Effects of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
L-leucine DMQHN7I Investigative Amino acid transporter heavy chain SLC3A2 (SLC3A2) affects the import of L-leucine. [50]
------------------------------------------------------------------------------------
65 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [1]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [2]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [3]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [4]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [5]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [6]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [7]
Quercetin DM3NC4M Approved Quercetin increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [9]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [10]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [11]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [12]
Decitabine DMQL8XJ Approved Decitabine affects the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [13]
Marinol DM70IK5 Approved Marinol decreases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [14]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [15]
Selenium DM25CGV Approved Selenium increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [16]
Phenobarbital DMXZOCG Approved Phenobarbital increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [17]
Fluorouracil DMUM7HZ Approved Fluorouracil increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [18]
Dexamethasone DMMWZET Approved Dexamethasone decreases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [19]
Troglitazone DM3VFPD Approved Troglitazone increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [20]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [21]
Rosiglitazone DMILWZR Approved Rosiglitazone increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [5]
Azathioprine DMMZSXQ Approved Azathioprine increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [22]
Piroxicam DMTK234 Approved Piroxicam decreases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [23]
Clozapine DMFC71L Approved Clozapine increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [24]
Indomethacin DMSC4A7 Approved Indomethacin increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [25]
Ethinyl estradiol DMODJ40 Approved Ethinyl estradiol increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [26]
Cidofovir DMA13GD Approved Cidofovir increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [5]
Fenofibrate DMFKXDY Approved Fenofibrate increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [5]
Cyclophosphamide DM4O2Z7 Approved Cyclophosphamide decreases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [11]
Zidovudine DM4KI7O Approved Zidovudine increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [27]
Ifosfamide DMCT3I8 Approved Ifosfamide increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [5]
Clodronate DM9Y6X7 Approved Clodronate affects the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [5]
Sulindac DM2QHZU Approved Sulindac increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [28]
Ibuprofen DM8VCBE Approved Ibuprofen increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [5]
Acetic Acid, Glacial DM4SJ5Y Approved Acetic Acid, Glacial increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [29]
Motexafin gadolinium DMEJKRF Approved Motexafin gadolinium increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [29]
Lindane DMB8CNL Approved Lindane increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [11]
Bicalutamide DMZMSPF Approved Bicalutamide increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [30]
Bosentan DMIOGBU Approved Bosentan increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [31]
Gamolenic acid DMQN30Z Approved Gamolenic acid increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [32]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [33]
Curcumin DMQPH29 Phase 3 Curcumin increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [34]
Fenretinide DMRD5SP Phase 3 Fenretinide increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [35]
HMPL-004 DM29XGY Phase 3 HMPL-004 decreases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [36]
Bardoxolone methyl DMODA2X Phase 3 Bardoxolone methyl decreases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [36]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [21]
Amiodarone DMUTEX3 Phase 2/3 Trial Amiodarone increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [37]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [11]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [38]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [39]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [40]
PMID26394986-Compound-22 DM43Z1G Patented PMID26394986-Compound-22 increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [41]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [42]
Celastrol DMWQIJX Preclinical Celastrol increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [43]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [44]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [45]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [36]
Deguelin DMXT7WG Investigative Deguelin increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [46]
methyl p-hydroxybenzoate DMO58UW Investigative methyl p-hydroxybenzoate increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [47]
Paraquat DMR8O3X Investigative Paraquat increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [48]
Lithium chloride DMHYLQ2 Investigative Lithium chloride increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [49]
Forskolin DM6ITNG Investigative Forskolin increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [50]
CH-223191 DMMJZYC Investigative CH-223191 decreases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [51]
Bilirubin DMI0V4O Investigative Bilirubin increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [52]
Cycloheximide DMGDA3C Investigative Cycloheximide increases the expression of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [53]
------------------------------------------------------------------------------------
⏷ Show the Full List of 65 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic decreases the ubiquitination of Amino acid transporter heavy chain SLC3A2 (SLC3A2). [8]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Inter-laboratory comparison of human renal proximal tubule (HK-2) transcriptome alterations due to Cyclosporine A exposure and medium exhaustion. Toxicol In Vitro. 2009 Apr;23(3):486-99.
3 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
4 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
5 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
6 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
7 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
8 Quantitative Assessment of Arsenite-Induced Perturbation of Ubiquitinated Proteome. Chem Res Toxicol. 2022 Sep 19;35(9):1589-1597. doi: 10.1021/acs.chemrestox.2c00197. Epub 2022 Aug 22.
9 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
10 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
11 Transcriptome-based functional classifiers for direct immunotoxicity. Arch Toxicol. 2014 Mar;88(3):673-89.
12 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
13 Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS One. 2012;7(12):e53003. doi: 10.1371/journal.pone.0053003. Epub 2012 Dec 27.
14 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
15 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
16 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
17 Dose- and time-dependent effects of phenobarbital on gene expression profiling in human hepatoma HepaRG cells. Toxicol Appl Pharmacol. 2009 Feb 1;234(3):345-60.
18 Identification of novel genes associated with the response to 5-FU treatment in gastric cancer cell lines using a cDNA microarray. Cancer Lett. 2004 Oct 8;214(1):19-33.
19 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
20 Effects of ciglitazone and troglitazone on the proliferation of human stomach cancer cells. World J Gastroenterol. 2009 Jan 21;15(3):310-20.
21 Gene expression profiling in Ishikawa cells: a fingerprint for estrogen active compounds. Toxicol Appl Pharmacol. 2009 Apr 1;236(1):85-96.
22 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
23 Apoptosis induced by piroxicam plus cisplatin combined treatment is triggered by p21 in mesothelioma. PLoS One. 2011;6(8):e23569.
24 Toxicoproteomics reveals an effect of clozapine on autophagy in human liver spheroids. Toxicol Mech Methods. 2023 Jun;33(5):401-410. doi: 10.1080/15376516.2022.2156005. Epub 2022 Dec 19.
25 Anti-inflammatory agent indomethacin reduces invasion and alters metabolism in a human breast cancer cell line. Neoplasia. 2007 Mar;9(3):222-35.
26 The genomic response of a human uterine endometrial adenocarcinoma cell line to 17alpha-ethynyl estradiol. Toxicol Sci. 2009 Jan;107(1):40-55.
27 Differential gene expression in human hepatocyte cell lines exposed to the antiretroviral agent zidovudine. Arch Toxicol. 2014 Mar;88(3):609-23. doi: 10.1007/s00204-013-1169-3. Epub 2013 Nov 30.
28 Expression profile analysis of colon cancer cells in response to sulindac or aspirin. Biochem Biophys Res Commun. 2002 Mar 29;292(2):498-512.
29 Motexafin gadolinium and zinc induce oxidative stress responses and apoptosis in B-cell lymphoma lines. Cancer Res. 2005 Dec 15;65(24):11676-88.
30 Microarray analysis of bicalutamide action on telomerase activity, p53 pathway and viability of prostate carcinoma cell lines. J Pharm Pharmacol. 2005 Jan;57(1):83-92.
31 Omics-based responses induced by bosentan in human hepatoma HepaRG cell cultures. Arch Toxicol. 2018 Jun;92(6):1939-1952.
32 Antineoplastic effects of gamma linolenic Acid on hepatocellular carcinoma cell lines. J Clin Biochem Nutr. 2010 Jul;47(1):81-90.
33 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
34 Gene-expression profiling during curcumin-induced apoptosis reveals downregulation of CXCR4. Exp Hematol. 2007 Jan;35(1):84-95.
35 Regulation of lipocalin-2 gene by the cancer chemopreventive retinoid 4-HPR. Int J Cancer. 2006 Oct 1;119(7):1599-606.
36 Mapping the dynamics of Nrf2 antioxidant and NFB inflammatory responses by soft electrophilic chemicals in human liver cells defines the transition from adaptive to adverse responses. Toxicol In Vitro. 2022 Oct;84:105419. doi: 10.1016/j.tiv.2022.105419. Epub 2022 Jun 17.
37 Identification by automated screening of a small molecule that selectively eliminates neural stem cells derived from hESCs but not dopamine neurons. PLoS One. 2009 Sep 23;4(9):e7155.
38 Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov. 2013 Mar;3(3):308-23.
39 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
40 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
41 Anticancer effects of non-steroidal anti-inflammatory drugs against cancer cells and cancer stem cells. Toxicol In Vitro. 2021 Aug;74:105155. doi: 10.1016/j.tiv.2021.105155. Epub 2021 Mar 27.
42 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
43 Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. Cancer Cell. 2006 Oct;10(4):321-30.
44 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
45 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
46 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
47 Transcriptome dynamics of alternative splicing events revealed early phase of apoptosis induced by methylparaben in H1299 human lung carcinoma cells. Arch Toxicol. 2020 Jan;94(1):127-140. doi: 10.1007/s00204-019-02629-w. Epub 2019 Nov 20.
48 CD34+ derived macrophage and dendritic cells display differential responses to paraquat. Toxicol In Vitro. 2021 Sep;75:105198. doi: 10.1016/j.tiv.2021.105198. Epub 2021 Jun 9.
49 Early gene response in lithium chloride induced apoptosis. Apoptosis. 2005 Jan;10(1):75-90. doi: 10.1007/s10495-005-6063-x.
50 Methylmercury Uptake into BeWo Cells Depends on LAT2-4F2hc, a System L Amino Acid Transporter. Int J Mol Sci. 2017 Aug 8;18(8):1730. doi: 10.3390/ijms18081730.
51 The Ah receptor regulates growth factor expression in head and neck squamous cell carcinoma cell lines. Mol Carcinog. 2014 Oct;53(10):765-76.
52 Functional induction of the cystine-glutamate exchanger system Xc(-) activity in SH-SY5Y cells by unconjugated bilirubin. PLoS One. 2011;6(12):e29078. doi: 10.1371/journal.pone.0029078. Epub 2011 Dec 27.
53 Aryl hydrocarbon receptor-dependent up-regulation of the heterodimeric amino acid transporter LAT1 (SLC7A5)/CD98hc (SLC3A2) by diesel exhaust particle extract in human bronchial epithelial cells. Toxicol Appl Pharmacol. 2016 Jan 1;290:74-85.